Name:
Section:
MA 114 - Calculus II

## Quiz \# $4-02 / 19 / 15$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Find the Maclaurin series for $f(x)=\frac{1}{3-2 x}$ and find the interval on which the expansion is valid.

Recall that the Maclaurin series for $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}$. Then:

$$
\begin{aligned}
\frac{1}{3-2 x} & =\frac{1}{3\left(1-\left(\frac{2}{3}\right) x\right)} \\
& =\frac{1}{3} \sum_{n=0}^{\infty}\left(\frac{2}{3}\right)^{n} x^{n}
\end{aligned}
$$

Since the expansion for $\frac{1}{1-x}$ is valid for $|x|<1$ we can conclude that our expansion is valid on $\left(\frac{-3}{2}, \frac{3}{2}\right)$

Award 1 point for correct series and 1 point for correct interval.
2. Find the Maclaurin series for:

$$
f(x)=e^{x}
$$

and find the interval on which the expansion is valid.
First construct a general formula for $f^{(n)}(x)$ :

$$
f(x)=e^{x}, f^{\prime}(x)=e^{x}, f^{\prime \prime}(x)=e^{x}, f^{\prime \prime \prime}(x)=e^{x}, \cdots
$$

Then,

$$
f^{(n)}(x)=e^{x}
$$

Therefore:

$$
f^{(n)}(0)=1
$$

So the Maclaurin series for $f(x)=e^{x}$ centered at is $f(x)=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$. We will now use the ratio test to find the valid interval for the expansion:

$$
\begin{aligned}
\rho & =\lim _{n \rightarrow \infty}\left|\frac{(x)^{n+1}}{(n)!} \frac{(n+1)!}{(x)^{n}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{x}{(n+1)}\right| \\
& =x \lim _{n \rightarrow \infty}\left|\frac{1}{(n+1)}\right| \\
& =0
\end{aligned}
$$

So the Maclaurin series is valid on the whole real line.

Award 1 point for finding the Maclaurin Series and 1 point for correct interval. Full points may be awarded if the student memorized the interval and the Maclaurin series.

