Name: \qquad Section:
MA 114 - Calculus II

Quiz \# $7-03 / 26 / 15$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

Let

$$
I=\int \frac{d x}{x^{2} \sqrt{x^{2}-2}}
$$

a. Show that the substitution $x=\sqrt{2} \sec \theta$ transforms the integral I into $\frac{1}{2} \int \cos \theta d \theta$.

Let $x=\sqrt{2} \sec \theta$. Then

$$
\begin{gathered}
d x=\sqrt{2} \sec \theta \tan \theta d \theta, \quad \sqrt{x^{2}-2}=\sqrt{2} \tan \theta . \\
I=\int \frac{d x}{x^{2} \sqrt{x^{2}-2}}=\int \frac{\sqrt{2} \sec \theta \tan \theta d \theta}{2 \sec ^{2} \theta \sqrt{2} \tan \theta}=\frac{1}{2} \int \cos \theta d \theta .
\end{gathered}
$$

Award 1 point for correct values of $d x$ and $\sqrt{x^{2}-2}$. Also 1 point for correct simplifacitons.
b. Use a right triangle to show that with the above substitution, $\sin \theta=\frac{\sqrt{x^{2}-2}}{x}$.

The substitution $x=\sec \theta$ implies that the hypotenuse is x and the adjacent edge is 3 . Hence

$$
\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{\sqrt{x^{2}-2}}{x} .
$$

Award 1 point if the edges of the right triangle are labeled correctly.
c. Evaluate I in terms of x.

$$
\begin{aligned}
I=\int \frac{d x}{x^{2} \sqrt{x^{2}-2}} & =\frac{1}{2} \int \cos \theta d \theta \\
& =\frac{1}{2} \sin \theta+C \\
& =\frac{\sqrt{x^{2}-2}}{2 x}+C
\end{aligned}
$$

Award 1 point for correct answer. If student omits the constant, add it without penalty.

