Name:
Section:
MA 114 - Calculus II

Quiz \# $9-04 / 09 / 15$

Answer all questions in a clear and concise manner. Answers that are without explanations or are poorly presented may not receive full credit.

1. Consider the lamina of constant density $\rho=3 \mathrm{~g} / \mathrm{cm}^{2}$ occupying the region beneath the graph of $y=\frac{1}{1+x^{2}}$ for $0 \leq x \leq 2$ and above the x-axis. Calculate M_{y}, the y-moment of the lamina.

$$
\begin{gathered}
M_{y}=\rho \int_{0}^{2} x(f(x)) d x=3 \int_{0}^{2} x \cdot \frac{1}{1+x^{2}} d x=3 \int_{0}^{2} \frac{x}{1+x^{2}} d x \\
\left.\frac{3}{2} \ln \left(1+x^{2}\right)\right|_{0} ^{2}=\frac{3}{2} \ln 5
\end{gathered}
$$

Award 1 point for using the correct formula, and 1 point for the correct calculation.
2. Use separation of variables to solve the differential equation

$$
\begin{aligned}
y^{\prime} & =2 x y^{2} . \\
\frac{\mathrm{d} y}{\mathrm{~d} x} & =2 x y^{2} \\
\int \frac{\mathrm{~d} y}{y^{2}} & =\int 2 x \mathrm{~d} x \\
-\frac{1}{y} & =x^{2}+C \\
y & =-\frac{1}{x^{2}+C}
\end{aligned}
$$

Award one point for setting up the correct integral, and one point for the correct solution (location of the constant C is important).

