This quiz will not be collected for a grade but is intended as a supplement for your study.
Directions: For each of the following questions, show all your work in order to justify the necessary steps.

1. Use the Fundamental Theorem of Calculus (Part I) to find for what x-value the following function, $F(x)$, achieves its minimum:

$$
F(x)=\int_{\frac{11}{4}}^{x} \ln (2 t-5) d t \quad \text { for } x>\frac{11}{4}
$$

(Hint: Use the First Derivative Test)

Solution:

Since $f(t)=\ln (2 t-5)$ is continuous for $t>\frac{5}{2}$, Part I of the Fundamental Theorem of Calculus shows $F^{\prime}(x)=f(x)=\ln (2 x-5) . F^{\prime}(x)=0$ if and only if $2 x-5=1$, i.e. $x=3$ (notice the Fundamental Theorem of Calculus ensures $F(x)$ is differentiable everywhere on the interval $\left(\frac{11}{4}, \infty\right)$, so $x=3$ is the only critical number.) One notices $F^{\prime}(c)<0$ for $c \in\left(\frac{11}{4}, 3\right)$ and $F^{\prime}(d)>0$ for $d \in(3, \infty)$, so by the First Derivative Test

$$
F(3)=\int_{\frac{11}{4}}^{3} \ln (2 t-5) d t
$$

is an absolute minimum.
2. Find the value of the following sum by recognizing it as a definite integral and use the Fundamental Theorem of Calculus (Part II) to evaluate it exactly:

$$
\lim _{n \rightarrow \infty}\left(\frac{\pi}{2 n} \sum_{k=1}^{n} \cos \left(k \cdot \frac{\pi}{2 n}\right)\right)
$$

Solution:

Comparing the above to the definition of an integral,

$$
\int_{a}^{b} f(t) d t=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f(a+k \Delta x) \Delta x, \text { where } \Delta x=\frac{b-a}{n},
$$

it is reasonable to assume $f(t)=\cos (t)$ and also that $a=0$. Since $\Delta x=\frac{\pi}{2 n}$, it follows that $b=\frac{\pi}{2}$. This may be verified by noticing $f(a+k \Delta x)=\cos \left(0+k \cdot \frac{\pi}{2 n}\right)=$ $\cos \left(k \cdot \frac{\pi}{2 n}\right)$, and therefore the Riemann sum is equivalent to $\int_{0}^{\frac{\pi}{2}} \cos (t) d t$ and since $\cos (t)$ is a continuous function for all real numbers (and in particular on $\left[0, \frac{\pi}{2}\right]$), by Part II of the Fundamental Theorem of Calculus,

$$
\int_{0}^{\frac{\pi}{2}} \cos (t) d t=\sin \left(\frac{\pi}{2}\right)-\sin (0)=1-0=1
$$

