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Abstract: We will study linear time-invariant delay-differential systems from the behavioral
point of view as it was introduced for dynamical systems by Willems (see [22]). It will
be presented a ring H lying between R[s, z, z−1] and R(s)[z, z−1], whose elements can be
interpreted as a generalized version of delay-differential operators on C∞(R,R). In this
framework, a behavior is the kernel of such an operator. Using the ring H, an algebraic
characterization of inclusion resp. equality of the behaviors under consideration is given.
Finally, controllability of the behaviors is characterized in terms of the rank of the associated
matrices. In the case of time-delay state-space systems this criterion becomes the known
Hautus-criterion for spectral controllability.
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1 Introduction

The purpose of this paper is an approach to linear time-invariant delay-differential systems
with algebraic methods. In contrast to the work of e. g. Morse [16], Sontag [21] and more
recently Habets [8] we will not consider these systems as systems over (polynomial) rings.
Instead we will use the behavioral viewpoint for dynamical systems as it was introduced
by Willems [22]: our objects will be behaviors, which are defined by linear time-invariant
delay-differential equations over the time axis R (for the definition of a behavior see [22]).
In the scalar case such equations are given by

L∑
j=0

N∑
i=0

pijw
(i)(t− j) = 0, t ∈ R, (1.1)
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where pij ∈ R and w(i) denotes the i-th derivative of the function w. In our approach only
functions w in C∞(R,R) will be considered. In the multivariable case, linear subspaces B of
C∞(R,Rm) are investigated, which are the solution space of a system of delay-differential
equations, i. e. for which there exist n, L, N ∈ N and matrices Pij ∈ Rn×m so that

B = {w ∈ C∞(R,Rm)|∑L
j=0

∑N
i=0Pijw

(i)(t− j) = 0, t ∈ R}. (1.2)

The behavior in (1.2) can be written as B = ker P̃ , where P =
∑L

j=0

∑N
i=0 Pijs

izj ∈
R[s, z]n×m and P̃ denotes the associated delay-differential operator from C∞(R,Rm) to
C∞(R,Rn), i. e. P̃w(t) =

∑L
j=0

∑N
i=0 Pijw

(i)(t − j). Note that (1.2) includes ordinary
differential equations (P ∈ R[s]) as well as the case of a pure delay equation (P ∈ R[z]).
Since the shift yields an isomorphism on C∞(R,R), it is algebraically more adequate to
consider the polynomial ring R[s, z, z−1] instead of R[s, z].

Although the space B is in general infinite-dimensional, via polynomial matrices it is given a
description with finitely many parameters. This leads to the possibility of studying special
aspects of this type of equations with mainly algebraic methods.

The polynomial approach to time-delay systems was already introduced by Kamen [10].
He considered delay-differential operators as special convolution operators in the distribu-
tional sense and presented, within this set-up, procedures for the solution of input/output-
equations and for the internal description (state-space realizations) of such equations.

In the present paper our starting point will be the solution spaces (or behaviors) ker P̃ as
given in (1.2). We will not investigate the question, which subspaces of C∞(R,Rm) occur
as such behaviors. Main ideas for an answer to this question are contained in the thesis
of Soethoudt [20]. He characterizes behaviors, which have an AR-representation in the
purely differential sense. Instead of attacking this (nevertheless interesting) problem of the
existence of polynomial representations, we will consider the question of uniqueness: for
what pairs of matrices P, Q over R[s, z, z−1] does hold ker P̃ = ker Q̃? It should be obvious,
that an answer of this question is necessary for the development of a “behavioral theory”
using polynomial (AR-) representations for time-delay systems. Simple examples show that
the above problem cannot be satisfactorily solved with the help of the ring R[s, z, z−1] or
even R(s)[z, z−1]. The appropriate domain in order to translate relations between behaviors
into relations between the associated polynomial matrices lies between these two rings and
turns out to be

H = {p ∈ R(s)[z, z−1] | p(s, e−s) is an entire function}.
In the preliminaries an interpretation of the elements of H as operators on C∞(R,R) is given.
It generalizes the interpretation of polynomials in R[s, z, z−1] as delay-differential operators.
Therefore we will refer to these associated operators as delay-differential operators as well.

A similar construction occured already in the work of Kamen et al. [11], where the ring
Θ generated by the entire functions (1 − e−seσ)(s − σ)−1, σ ∈ C, and their derivatives is
considered. One can easily see, that the ring Θ[s, z] in [11, p. 841] is contained in H. Kamen
et al. also gave an interpretation of the functions (1− e−seσ)(s− σ)−1 as transfer functions
of distributed-delay systems.

One main tool in the present approach is the fact that the division properties in the ring
H correspond to the division properties in the ring of entire functions, i. e. for p, q ∈ H
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it holds: p divides q in H iff q(s, e−s)p(s, e−s)−1 is an entire function. For the associated
delay-differential equations this has as a consequence, that it suffices to consider fundamental
solutions, i. e. functions of the type w(t) = tkeλt instead of the full solution space. This fits
with a result of Malgrange [14, p. 318], who proved that the space of all linear combinations of
fundamental solutions of a delay-differential equation lies dense in the full space of smooth
solutions (with respect to the topology of uniform convergence of all derivatives on all
compact subsets in R).

Another important result in our framework is the fact, that H is a so-called elementary
divisor ring. This means firstly, that H is a Bézout-domain, i. e. every finitely generated
ideal in H is principal. Secondly, every matrix over H can be brought into diagonal form
via multiplication with unimodular matrices from the left and from the right. With this
type of normal form (which cannot be achieved e. g. over the ring R[s, z, z−1]), the results
for multivariable delay-differential equations can easily be derived from the scalar case.

With this informations about the ring H, which are derived in section 3, we will show in
the fourth section how the relations between behaviors as given in (1.2) can be put into
correspondence with the division relations of the associated matrices over H. In particular,
we prove for P ∈ Hn×m, Q ∈ Hr×m: ker P̃ ⊆ ker Q̃ iff Q = AP for some A ∈ Hn×r, which
yields ker P̃ = ker Q̃ iff A is unimodular over H.

Finally in the fifth section, controllability of delay-differential systems is considered. In
this set-up it is natural to use the notion of controllability for behaviors as introduced by
Willems [22]. Using a diagonal form for matrices P ∈ Hn×m, it will be proven that ker P̃ is
controllable if and only if rk�P (s, e−s) = rkHP for all s ∈ C. Recently, this characterization
has been obtained independently for the same situation of delay-differential equations by
Rocha/Willems [19]. The given criterion is a generalization of the Hautus-test for time-
delay state-space systems, which characterizes the so-called spectral controllability, see e. g.
Pandolfi [18], Bhat/Koivo [2], Manitius/Triggiani [15], and Kamen et al. [11].

2 Preliminaries

In this section we present the framework for our study of delay-differential equations and
introduce the notations. Starting with the interpretation of polynomials in R as delay-
differential operators on C∞(R), we first have a glance at the fundamental solutions of the
associated equations. This leads us to the corresponding characteristic function and its
zeros. Simple examples suggest the introduction of a larger space H of operators which are
closely related to the delay-differential operators. Finally we state the surjectivity of the
operators under consideration.

Definition 2.1

a) Put R := R[s, z, z−1] and let C∞(Rm) := C∞(R,Rm) for m ≥ 1.
b) For m ≥ 1 and t0 ∈ R define the shift σt0 : C∞(Rm) → C∞(Rm) by (σt0w)(t) = w(t− t0)

for w ∈ C∞(Rm). In particular, let σ := σ1.
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c) With P =
∑L

j=l

∑N
i=0 Pijs

izj ∈ Rn×m associate the following delay-differential operator

P̃ : C∞(Rm) −→ C∞(Rn)

w �−→ ∑L
j=l

∑N
i=0 Pijσ

jw(i),
(2.1)

where w(i) = di

dti
w.

d) For p =
∑N

i=0 pis
i ∈ R[s] and w ∈ C∞[a, b] we use analogously the notion p̃(w)(t) =∑N

i=0 piw
(i)(t), hence p̃(w) ∈ C∞[a, b].

Note that part c) makes indeed sense, since on C∞(R) the operators σ and d
dt commute.

In this context, the solution space in C∞(R) of the scalar equation (1.1) is just ker p̃, a linear
shift-invariant subspace of C∞(R), i. e. σt(ker p̃) = ker p̃ for all t ∈ R. In this section we
will only study the scalar equation (1.1). We will come to the multivariable situation in
section 4.

Remark 2.2 The map

T : R −→ End�(C∞(R))
p �−→ p̃

is an injective algebra-homomorphism. The homomorphism properties p̃+ q = p̃ + q̃, p̃q =
p̃ ◦ q̃ can easily be verified. To prove injectivity of T , let p =

∑
i,j pijs

izj ∈ R and assume
that p̃ = 0. Then for arbitrary λ ∈ C and w ∈ C∞(R) with w(t) = eλt we obtain 0 =
p̃(w)(t) =

∑
i,j pijλ

ieλ(t−j) =
∑

i,j pijλ
ie−λjeλt for all t ∈ R, hence

∑
i,j pijλ

ie−λj = 0.
Since this holds true for all λ ∈ C, the linear independence of the functions λ �→ λieλj yields
in fact pij = 0 for all i, j.

One question we want to attack in this paper is, how to characterize the inclusion ker p̃ ⊆
ker q̃ in terms of the elements p, q ∈ R. Let us first have a look at a simple

Example 2.3

a) For p, q ∈ R[s] ⊂ R the theory of ordinary differential equations leads to ker p̃ ⊆ ker q̃ iff
p divides q in R[s], hence iff p divides q in R.

b) It is easily seen that ker s̃ = {constants} ⊂ ker z̃ − 1 = {w ∈ C∞(R)|w is of period 1}.
But s does not divide z − 1 in R. Of course, s divides z − 1 in R(s)[z, z−1].

The above shows, that the division properties of the two rings R and R(s)[z, z−1] are not
useful in the algebraic description of ker p̃ ⊆ ker q̃.

As with ordinary differential equations, some more information about the solution space of
(1.1) is obtainable by studying fundamental solutions w(t) = tkeλt where k ∈ N0 and λ ∈ C.
In the present case this leads to the characteristic function of (1.1), which will be an entire
function. We will need the concept of a characteristic function in a slightly more general
situation, handled in the next definition. In the special case of part b) of the definition, these
functions are often called quasi-polynomials (see e. g. [7, p. 63]) or exponential polynomials
(see [1, ch. 12]). In part c) and d) we introduce some notations useful for the sequel.
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Definition 2.4

a) For p =
∑L

j=l pjz
j ∈ R(s)[z, z−1] with pj ∈ R(s) and pl 	= 0 	= pL define the degree of p

to be degz p := L− l. Further let

p∗(s) :=
L∑
j=l

pj(s)e−js for all s ∈ C not being a pole of pj , j = l . . . , L.

Then p∗ ∈M(C), the set of all meromorphic functions on C.

b) If p =
∑L

j=l

∑N
i=0 pijs

izj ∈ R, then p∗ ∈ H(C), the set of entire functions. p∗ is called
the characteristic function of the delay-differential equation

L∑
j=l

N∑
i=0

pijw
(i)(t− j) = 0, t ∈ R.

c) For f ∈M(C) and α ∈ C denote the order of the zero (resp. pole) α of f by

μα(f) := min{k ∈ Z | (s− α)−kf holomorphic and not zero around α }.

d) For f1, . . . , fr ∈M(C) let V(f1, . . . , fr) = {α ∈ C |μα(fi) ≥ 1, i = 1, . . . , r} be the set of
common zeros of f1, . . . , fr.

Note that we interpret here s as algebraic indeterminate over R as well as complex variable.

Remark 2.5 The map R(s)[z, z−1] → M(C), p �→ p∗ is an injective ring homomorphism.
The injectivity follows, as in Remark 2.2, from the linear independence of the functions
s �→ skejs.

With this notation, we get from the theory of delay-differential equations for p ∈ R and for
the function w ∈ C∞(R,C), w(t) = tkeλt

w ∈ ker p̃⇐⇒ μλ(p∗) > k (2.2)

(see [1, p. 54/55] for a special case). This can also be proven directly by showing that
p̃w(t) = dk

dsk (p∗(s)est)|s=λ. As with ordinary differential equations it is true that with
w ∈ C∞(R,C) also Rew, Imw ∈ C∞(R) are in ker p̃.

The foregoing consideration indicates, that a first knowledge about the dimension of ker p̃
can be obtained by calculating the number of zeros of the associated characteristic function
p∗. Using the theory of entire functions this can be done in the following sense.

Proposition 2.6 Let p ∈ R. Then

#V(p∗) <∞ ⇐⇒ p = zkφ for some k ∈ Z and φ ∈ R[s]\{0}.
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This result can be proven by use of some facts about the order of entire functions, as they
can be found e. g. in [9]. Since we are not aware of an explicit proof in the literature, we
present here a short sketch, how to establish the result with the help of [9].
Proof: “⇐” is obvious.
“⇒” Let p =

∑L
j=l pjz

j ∈ R with pj ∈ R[s]. If #V(p∗) < ∞, then p∗ = aeg with a ∈ C[s]
and g ∈ H(C). Suppose that g is not a constant. From [9, 2.7.3, 2.7.4, 4.2.1] it follows
ord(p∗) = ord(

∑L
j=l pje

−j·) ≤ 1, where the order ord(f) of an entire function f is defined
as in [9, 1.11.1]. But then [9, 2.7.3, 2.7.5] implies g ∈ C[s] and moreover g(s) = αs+β with
some α, β ∈ C. Hence p∗(s) =

∑L
j=l pj(s)e

−js = a(s)eβeαs. Now, from the independence of
the functions skeαs we get α ∈ {−L, . . . ,−l} and pj = 0 for j 	= −α. Thus p = p−αzα. �

Note the simple fact, that for p = zkφ ∈ R with φ ∈ R[s] and k ∈ Z one has ker p̃ = ker φ̃,
which is just the solution space of an ordinary linear homogeneous differential equation with
constant coefficients over R. Hence, as an immediate consequence of (2.2) and Prop. 2.6 we
get

#V(p∗) = ∞ ⇐⇒ dim ker p̃ = ∞
for arbitrary p ∈ R. In other words, ker p̃ is finite-dimensional if and only if p̃ is a (shifted)
ordinary differential operator. Moreover, for q ∈ R and φ ∈ R[s]\{0} the finite dimension-
ality of ker φ̃ together with (2.2) implies the crucial fact

q∗

φ
∈ H(C) ⇐⇒ ker φ̃ ⊆ ker q̃. (2.3)

This easy equivalence is central for our framework, as it allows us to introduce a bigger class
H of linear operators on C∞(R), which are closely related to delay-differential-operators.
More precisely, for p = qφ−1 ∈ R(s)[z, z−1], where p∗ = q∗φ−1 ∈ H(C), it is possible to
define p̃ = q̃ ◦ φ̃−1.

We introduce precisely these objects in the following definition and show their well-
definedness as well as some elementary properties afterwards in Remark 2.8.

Definition 2.7

a) Put H := {p ∈ R(s)[z, z−1] | p∗ ∈ H(C)}.
b) For p = qφ−1 ∈ H with q ∈ R and φ ∈ R[s]\{0} define the operator

p̃ : C∞(R) −→ C∞(R)
w �−→ p̃(w) := q̃(v), where v ∈ C∞(R) with φ̃(v) = w.

We call p̃ a delay-differential operator also if p ∈ H.

Remark 2.8

1) From Remark 2.5 it follows that H is a commutative domain.
2) One has to establish the well-definedness of the map p̃. First, for fixed q ∈ R and φ ∈ R[s]

with qφ−1 ∈ H the well-definedness of the map w �→ q̃(v), where v ∈ C∞(R) satisfies
φ̃(v) = w is a consequence of (2.3). Next, to see that the map p̃ does not depend on the
special representation of p, let p = qφ−1 = q′ψ−1 ∈ H. For w ∈ C∞(R) put φ̃(v) = w =
ψ̃(v′) and φ̃(h) = v′ with suitable v, v′, h ∈ C∞(R). Then ψ̃(h) − v ∈ ker φ̃ ⊆ ker q̃ and
therefore q̃(v) = q̃(ψ̃(h)) = q̃′(φ̃(h)) = q̃′(v′).
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3) It can easily be verified that p̃ is an endomorphism on C∞(R). Moreover, the ring H can
be viewed as a subring of End�(C∞(R)). To see this, we need to prove that the map
p �→ p̃ is an injective ring homomorphism. For this, let p = aφ−1, q = bψ−1 ∈ H with
a, b ∈ R and φ, ψ ∈ R[s]. For w ∈ C∞(R) define v ∈ C∞(R) such that φ̃ψ(v) = w.

Then p̃+ q(w) = ˜(aψ + bφ)(v) = ãψ(v) + b̃φ(v) = p̃(w) + q̃(w) and from ψ̃(φ̃(v)) = w it
follows p̃ ◦ q̃(w) = p̃(̃b(φ̃(v))) = p̃ ◦ φ̃(̃b(v)) = ã ◦ b̃(v) = ãb(v) = p̃q(w), where we used
the homomorphism properties of T as defined in Remark 2.2. The injectivity of p �→ p̃
follows from the same remark.

4) A special case of the homomorphism property of p �→ p̃ is the following: from p =
qφ−1 ∈ H one has obviously pφ = q = φp in the ring H. The definition of p̃ tells us
that q̃(v) = p̃ ◦ φ̃(v) for all v ∈ C∞(R) and q̃(w) = q̃(φ̃(v)) = φ̃(q̃(v)) = φ̃ ◦ p̃(w) for
v, w ∈ C∞(R) satisfying φ̃(v) = w. Hence it is indeed q̃ = p̃ ◦ φ̃ = φ̃ ◦ p̃.

This shows that Def. 2.7 b) represents the unique extension of the algebra-homomorphism
T given in Remark 2.2 from R to the larger ring H.

Let us illustrate the general delay-differential operator by the following example, which is
in some sense the simplest non-ordinary delay-differential operator.

Example 2.9 Let p := (z − 1)s−1 ∈ R(s)[z]. Then p∗(s) = (e−s − 1)s−1 is an entire
function, thus p ∈ H. The associated operator is given by

p̃ : C∞(R) −→ C∞(R)
w �−→ σ(v) − v, where v(1) = w.

Obviously, ker ˜(z − 1) = {v ∈ C∞(R)|v is of period 1}, therefore ker p̃ = {w ∈ C∞(R)|∃v ∈
C∞(R) of period 1 and with v(1) = w}, which is a proper subspace of ker (̃z − 1). Note that
in the above case we have p̃(w) =

∫ t−1
t w(τ)dτ , which indicates, that H includes not only

point-delay but also distributed-delay operators.

As we will see in section 4, it is just the ring H, which gives an algebraic description of the
relation between behaviors of the type ker p̃ ⊂ C∞(R): the lattice of kernels of operators p̃
corresponds to the lattice of principal ideals in H. Therefore, for the development of this
correspondence it makes sense, to consider also delay-differential operators in the generalized
version of Def. 2.7. The ring H will be investigated in the next section.

We close the preliminaries with the following

Proposition 2.10 Let p ∈ H\{0}. Then:

a) The map p̃ ∈ End�(C∞(R)) is surjective.

b) Let degz p = L > 0. If w ∈ C∞(R) satisfies p̃(w) = 0 and w|[k,k+L] = 0 for some k ∈ Z,
then w = 0.

The result of part a) can be found in [6, p. 697]. Since [6] uses rather difficult methods
to prove surjectivity also for other (more general) operators, we present a complete and
elementary proof of both parts of the proposition in the appendix. Of course, the surjectivity
of p̃ is well-known if p ∈ R[s].
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3 Properties of the ring H

Beside others, two facts about the ring H will be important for the sequel. The one is, that
the division structure of H corresponds to the division properties of the associated entire
functions in the full ring H(C). This is made precise in part e) of Prop. 3.1. The other
main fact about H is its advantageous ring structure. In Thm. 3.2 we will show that H is
a Bézout-ring, i. e. that every finitely generated ideal is principal. Stated in other words,
finitely many elements p1, . . . , pr ∈ H have a greatest common divisor d ∈ H, which fulfills
a Bézout-equation d =

∑r
i=1 aipi over H. Furthermore, with Lemma 3.4 it will be proven

that H is an elementary divisor ring, which means that matrices over H can be brought into
diagonal form via multiplication with unimodular matrices from both sides. This is a very
useful fact in order to handle the matrix-case of delay-differential equations. One should
note that both properties hold true also for the ring H(C), see e. g. [17, Thm. 5, p. 136 and
Thm. 8, p. 141], but not for R.

Proposition 3.1

a) If p ∈ H and α ∈ C, then p∗(ᾱ) = p∗(α), where ¯ denotes complex conjugation.

b) Define H× := {p ∈ H | p is a unit}.
Then H× = {azk | a ∈ R\{0}, k ∈ Z} = {p ∈ H |V(p∗) = ∅}.

c) H is not a unique factorization domain and not a Noetherian ring.

d) For p ∈ H the following statements are equivalent: i) p is irreducible, ii) p = φzk for
some irreducible φ ∈ R[s] and k ∈ Z, iii) p is prime.

e) Let p, q ∈ H. Then p∗ | q∗ in H(C) ⇐⇒ p | q in H.

f) For p, q ∈ H, not both zero, there exists a greatest common divisor (gcd) d ∈ H\{0} of
p, q, which is unique up to multiplication by units in H. Moreover, V(d∗) = V(p∗, q∗).
In particular, p and q are coprime in H if and only if V(p∗, q∗) = ∅.

g) Let p = ad, q = bd ∈ H\{0} with d being a gcd of p, q and a, b ∈ H. Then c := abd ∈ H
is a least common multiple (lcm) of p, q. A lcm is unique up to multiplication by units
in H.

Proof: a) is obvious.

b) Let p ∈ H×, then p is also a unit in R(s)[z, z−1], thus p = azk for some a ∈ R(s) and
k ∈ Z. Since p∗(s) = a(s)e−ks and (p−1)∗(s) = a(s)−1eks are both entire functions, it follows
a ∈ R\{0}. The last equality holds with Prop. 2.6.

c) Consider z − 1 ∈ H. Let (αi)i∈� ⊂ C\{0} so that e−αi − 1 = 0, αi 	= αj for i 	= j and
α2i+1 = α2i for i ∈ N. Then pi := (s − α2i)(s − α2i+1) ∈ R[s] satisfies z − 1 = z−1

pi
pi =

z−1�n
i=1 pi

∏n
i=1 pi and these are factorizations of z − 1 in H. Moreover, the chain

z−1
p1

H ⊆ z−1
p1p2

H ⊆ z−1
p1p2p3

H ⊆ . . .

of ideals in H will not become stationary.

d) “i) ⇒ ii)” Let p ∈ H be irreducible. By b) there exists α ∈ C with p∗(α) = 0. If α ∈ R,
then p = p

s−α(s − α) is a factorization in H, thus p
s−α has to be a unit in H. By b) this
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yields p = azk(s − α) for some non-zero a ∈ R and k ∈ Z, which gives ii). If α 	∈ R, then
with a) one gets analogously p = azk(s− α)(s − ᾱ).
“ii) ⇒ iii)” Let φ ∈ R[s] be irreducible. Then φ is prime in R[s] and of the form φ = s− α
or φ = (s − α)(s − ᾱ). Suppose p = φzk and p | fg in H for some f, g ∈ H. Then
(fg)∗p∗−1

= (f∗g∗)p∗−1 ∈ H(C) and both cases for φ imply by use of a): p | f or p | g.
“iii) ⇒ i)” holds true in every commutative domain.

e) The direction “⇐” holds since p �→ p∗ is a ring homomorphism. “⇒” Let q∗(p∗)−1 ∈
H(C). In the field R(s, z) we can write qp−1 = ab−1 with coprime a, b ∈ R[s, z]. The
Theorem of Bézout for algebraic curves implies #{(λ, μ) ∈ C2 | a(λ, μ) = 0 = b(λ, μ)} <∞.
Since a∗(b∗)−1 = q∗(p∗)−1 ∈ H(C) yields V(b∗) ⊆ V(a∗), we get #V(b∗) < ∞. By use of
Prop.2.6 this leads to b = φzk for some φ ∈ R[s]\{0} and k ∈ Z. Hence qp−1 = az−kφ−1 ∈
H.

f) Since H ⊂ R(s)[z, z−1], there exists a gcd d ∈ R(s)[z, z−1] of p, q. Thus p = fd, q = gd
with coprime f, g ∈ R(s)[z, z−1].
In order to derive from this suitable factorizations in H, we shall shift the poles of f∗ or g∗

and the common zeros of f∗ and g∗ within multiplicities into the factor d. To do so, let

P = {α ∈ C|μα(f∗) < 0 or μα(g∗) < 0}
be the set of poles of f or g. Then we have #P < ∞ as well as #V(f∗, g∗) < ∞ and
P ∩ V(f∗, g∗) = ∅. Put

φ :=
∏
α∈P

(s − α)max{−μα(f∗),−μα(g∗)} ∈ R[s],

ψ :=
∏

α∈V(f∗,g∗)

(s− α)min{μα(f∗),μα(g∗)} ∈ R[s].

This leads to

p =
fφ

ψ

ψ

φ
d, q =

gφ

ψ

ψ

φ
d where

fφ

ψ
,
gφ

ψ
∈ H and V

(
(
fφ

ψ
)∗, (

gφ

ψ
)∗
)

= ∅. (3.1)

Moreover, ψ
φd ∈ H, for if α ∈ C would be a pole of (ψφd)

∗, then it would follow

α ∈ V((fφψ )∗, (gφψ )∗) since p∗, q∗ ∈ H(C). Hence we have a factorization p = f ′d′, q = g′d′

in H and V((f ′)∗, (g′)∗) = ∅ implies that (d′)∗ is a gcd of p∗, q∗ in H(C).
To show that d′ is a gcd of p, q in H, let p = f ′′d′′, q = g′′d′′ with f ′′, g′′, d′′ ∈ H. Then
p∗ = (f ′′)∗(d′′)∗, q∗ = (g′′)∗(d′′)∗ and thus (d′′)∗ | (d′)∗ in H(C). By e) this yields ad′′ = d′

for some a ∈ H and therefore d′ is a gcd of p, q in H. This argument also implies the
uniqueness property claimed for a gcd in H.
The equality V(d∗) = V(p∗, q∗) follows from (3.1) and the last claim of f) is an easy conse-
quence of b).

g) Obviously p | c and q | c in H. Let c′ ∈ H be another common multiple of p and q, i. e. let
there exist v, w ∈ H with adv = c′ = bdw. Therefore av = bw and a∗v∗ = b∗w∗ in H(C).
This yields w∗ = (a∗v∗)(b∗)−1 ∈ H(C) and moreover v∗(b∗)−1 ∈ H(C), since by f) a∗ and
b∗ have no common zeros. From e) we get the existence of b′ ∈ H with bb′ = v and thus
c′ = adbb′ = cb′. �

Now we can prove
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Theorem 3.2 H is a Bézout-ring, i. e. every finitely generated ideal is a principal ideal.

Proof: We need to show that for p, q ∈ H and a gcd d ∈ H of p, q there exist a, b ∈ H so
that d = ap+ bq, for this implies pH+ qH = dH. Without loss of generality we can assume
d = 1, hence by Prop. 3.1 f) that V(p∗, q∗) = ∅.

Step 1) The elements p, q are coprime also in R(s)[z, z−1].
To see this, let uv = p, uw = q with u, v, w ∈ R(s)[z, z−1], then let u = ũφ−1, v = ṽψ−1

with ũ, ṽ ∈ R, φ, ψ ∈ R[s] and where both ũ, φ as well as ṽ, ψ are coprime pairs in R. Then
ũṽ = pφψ and degz ũ ≥ 1 would imply, that all irreducible factors ui of ũ with degz ui ≥ 1
divide p in R. Similarly ui | q in R, which contradicts the coprimeness of p, q in H. Thus
u ∈ R(s) and is therefore a unit in R(s)[z, z−1].

Hence there exists a Bézout-equation in R(s)[z, z−1], i. e.

1 = ap+ bq with suitable a, b ∈ R(s)[z, z−1]. (3.2)

Step 2) Next we will vary the coefficients a, b of (3.2) in such a way, that we get a Bézout-
equation for p and q with coefficients in H. More precisely, we will construct a rational
function v ∈ R(s) so that

b+ vp, a− vq ∈ H. (3.3)

Then (3.2) will imply the Bézout-equation 1 = (a− vq)p + (b+ vp)q in H.

Step 2a) In order to achieve (3.3) we have to get rid of the poles of a∗ and b∗. Therefore
write

a =
ã

ψ
, b =

b̃

φ
with ã, b̃ ∈ H, ψ, φ ∈ R[s] and V(ã∗, ψ) = V (̃b∗, φ) = ∅. (3.4)

Let h ∈ R[s] be a gcd of ψ, φ and ψ = hψ1, φ = hφ1 with ψ1, φ1 ∈ R[s]. Then (3.2) becomes

hψ1φ1 = φ1ãp+ ψ1b̃q (3.5)

where all elements are in H. From ψ1(hφ1 − b̃q) = φ1ãp and V(ψ1, φ1) = ∅ = V(ã∗, ψ1) it
results with Prop. 3.1 e) ψ1 | p in H. So let p = p1ψ1 with p1 ∈ H. Similarly it is q = q1φ1

with q1 ∈ H. Thus, after cancellation of ψ1φ1, (3.5) reads

h = ãp1 + b̃q1. (3.6)

Step 2b) Put v = f
hψ1φ1

∈ R(s), where f ∈ R[s] still has to be specified. Then (3.3) implies
that we have to find f ∈ R[s] such that

(b+ vp)∗ = ( �b
hφ1

+ f
hφ1ψ1

p1ψ1)
∗ = (�b+fp1)∗

hφ1
∈ H(C),

(a− vq)∗ = ( �a
hψ1

− f
hφ1ψ1

q1φ1)
∗ = (�a−fq1)∗

hψ1
∈ H(C).

⎫⎬⎭ (3.7)

Hence we have to look for a polynomial f ∈ R[s] which places the zeros of b̃∗ + fp∗1 and
ã∗−fq∗1 appropriately at the same time. In the rest of the proof we will show that these are
two interpolation problems for f , which can in fact be solved both with the same polynomial
f ∈ R[s].

10



Firstly, for α ∈ V(φ1h) one has p∗1(α) 	= 0, since:
i) if α ∈ V(φ1) ⊂ V(q∗), then α 	∈ V(p∗), hence α 	∈ V(p∗1).
ii) If h(α) = 0, then by (3.6) and (3.4) it follows 0 = ã∗(α)p∗1(α) + b̃∗(α)q∗1(α) and ã∗(α) 	=
0 	= b̃∗(α). Therefore V(p∗, q∗) = ∅ yields p∗1(α) 	= 0 	= q∗1(α).

From this we obtain for α ∈ V(φ1h):

μα(̃b∗ + fp∗1) ≥ k ⇐⇒ (̃b∗ + fp∗1)
(ν)(α) = 0, ν = 0, . . . , k − 1

⇐⇒ b̃∗
(ν)

(α) +
ν∑

μ=0

(ν
μ

)
f (μ)(α)p∗

(ν−μ)

1 (α) = 0, ν = 0, . . . , k − 1

⇐⇒ f (ν)(α) = − 1
p∗1(α)

[
b̃∗(ν)

(α) +
∑ν−1

μ=0

(
ν
μ

)
p∗(ν−μ)

1 (α)f (μ)(α)
]

for ν = 0, . . . , k − 1.

A similar result holds for α ∈ V(ψ1h).

As a consequence f ∈ R[s] satisfies (3.7) if and only if

f (ν)(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− 1
p∗1(α)

[
b̃∗(ν)

(α) +
∑ν−1

μ=0

(ν
μ

)
p∗(ν−μ)

1 (α)f (μ)(α)
]

for ν = 0, . . . , μα(φ1h) − 1
if α ∈ V(φ1h)

1
q∗1(α)

[
ã∗(ν)

(α) −∑ν−1
μ=0

(ν
μ

)
q∗(ν−μ)

1 (α)f (μ)(α)
]

for ν = 0, . . . , μα(ψ1h) − 1
if α ∈ V(ψ1h)

(3.8)

In particular, for α ∈ V(φ1h)∩V(ψ1h) = V(h) and ν = 0 . . . , μα(h)−1 the derivative f (ν)(α)
has to be equal to both expressions given in (3.8). Thus we can find such an f only if for
those α and ν it is true that

− 1
p∗1(α)

⎡⎣b̃∗(ν)
(α) +

ν−1∑
μ=0

(
ν
μ

)
p∗

(ν−μ)

1 (α)f (μ)(α)

⎤⎦ =
1

q∗1(α)

⎡⎣ã∗(ν)
(α) −

ν−1∑
μ=0

(
ν
μ

)
q∗

(ν−μ)

1 (α)f (μ)(α)

⎤⎦ .
But this is indeed valid, since from (3.6) it follows

0 = h(ν)(α) = (ã∗p∗1 + b̃∗q∗1)
(ν)(α) =

ν∑
μ=0

(ν
μ

)
ã∗

(μ)
(α)p∗

(ν−μ)

1 (α) +
ν∑

μ=0

(ν
μ

)
b̃∗

(μ)
(α)q∗

(ν−μ)

1 (α)

for ν = 0, . . . , μα(h) − 1 and therefore one can apply Lemma A.2.

Since V(φ1ψ1h) ⊆ C is symmetric with respect to complex conjugation, Prop. 3.1 a) and
Lemma A.1 imply the existence of f ∈ R[s] with the properties required in (3.8). �

Example 3.3 Let p = s2, q = z − 1 ∈ H. Then s | q∗ but s2 	 | q∗ in H(C), thus d = s is a
gcd of p, q. A Bézout-equation is given by

s =
(1 − s)z + 2s− 1

s2
s2 + (s− 1)(z − 1).

Note also that ker p̃ = {w ∈ C∞(R)|∃α, β ∈ R ∀t ∈ R : w(t) = α + βt} and ker q̃ = {w ∈
C∞(R)|w is of period 1}, hence ker p̃ ∩ ker q̃ = {w ∈ C∞(R)|w constant } = ker d̃.
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It is a standing conjecture, that every commutative Bézout-domain is an elementary divisor
domain, which means by definition, that matrices can be brought into diagonal form via
left-right equivalence, see e. g. [3, p. 92]. In the present case, one can in fact prove the
elementary divisor property. To do so, we will show the following lemma, which states that
H is a so-called adequate ring, see e. g. [12, p. 473].

Lemma 3.4 Let p, q ∈ H, p 	= 0. There exists a factorization p = ab with a, b ∈ H such
that a and q are coprime whereas b̂ and q are not coprime whenever b̂ ∈ H\H× is a divisor
of b.

Proof: The idea of the proof is as follows: factorize p = ab such that V(b∗) = V(p∗, q∗)
and μλ(b∗) = μλ(p∗) for all λ ∈ V(b∗). This can easily be done if #V(p∗, q∗) < ∞. In the
infinite case it needs an iterative procedure as described below.

Let b1 ∈ H be a gcd of p and q and put a1 = p
b1

, so that p = a1b1. Define successively for
p = aibi, i ∈ N, the following elements:

let ci ∈ H be a gcd of ai and bi; put ai+1 =
ai
ci

and bi+1 = cibi. (3.9)

Hence p = aibi = ai+1cibi = ai+1bi+1. This gives a sequence of elements ai ∈ H with the
property that ai+1 divides ai in H. But then ai+1 divides ai also in the principal ideal ring
R(s)[z, z−1] with the consequence that for some k ∈ N there exist l ∈ Z and φ ∈ R[s]\{0}
such that ck = φzl is a unit in R(s)[z, z−1]. Thus the procedure (3.9) yields the existence
of a factorization

p = akbk with φ ∈ R[s] as a gcd of ak and bk in H.

This implies that V(a∗k, b
∗
k) is finite, say V(a∗k, b

∗
k) = {λ1, . . . , λn} and we can define f :=∏n

i=1(s − λi)li ∈ R[s] where li = μλi
(a∗k). With a := akf

−1 ∈ H and b := fbk ∈ H we get
the factorization p = ab, which in fact satisfies the requirements of the lemma:
1) To establish the coprimeness of a and q, suppose V(a∗, q∗) 	= ∅. Thus let λ ∈ V(a∗, q∗) ⊆
V(p∗, q∗) = V(b∗1). Then λ ∈ V(b∗1, a

∗
k) ⊆ V(a∗k, b

∗
k) = {λ1, . . . , λn}. But for λ = λj it is

μλ(a∗) = μλj
(a∗k) − μλj

(f) = 0. Hence V(a∗, q∗) = ∅ and from Prop. 3.1 f) we conclude the
coprimeness of a and q.
2) Let b̂ ∈ H\H× be a divisor of b and fix some λ ∈ V(b∗) with b̂∗(λ) = 0. The construction
(3.9) of the sequences (ci) and (bi) leads to the following equality of zero sets (note that we
count zeros in V not with multiplicity)

V(b∗) = V(f∗b∗k) = V(b∗k) = V(c∗k−1b
∗
k−1) = V(b∗k−1) = . . . = V(b∗1) = V(p∗, q∗).

Thus λ ∈ V(q∗, b̂∗) and therefore b̂ and q are not coprime.

Note that in the case V(p∗, q∗) = {λ1, . . . , λn} is finite, the above construction leads to the
factorization p = p

b b with b =
∏n
i=1(s − λi)li and li = μλi

(p∗). �

Now we can summarize the properties for matrices over H, as they follow from the above
ring theoretic results.
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Theorem 3.5

a) Let a1, . . . , an ∈ H and d ∈ H be a gcd of a1, . . . , an. Then there exists a matrix
A ∈ Hn×n with [a1, . . . , an] as its first row and detA = d.

b) For P ∈ Hn×m there exists U ∈ Gln(H) so that UP ∈ Hn×m has upper triangular form.

c) Let P ∈ Hn×m and Q ∈ Hl×m. There exists a greatest common right divisor (gcrd)
D ∈ Hm×m and matrices A ∈ Hm×n, B ∈ Hm×l with D = AP +BQ. If rkD = m, then
D is unique modulo multiplication from the left by unimodular matrices.

d) Let P, Q ∈ Hm×m with rkP = rkQ = m. Then there exists a least common left multiple
(lclm) M ∈ Hm×m, which is unique modulo unimodular factors from the left.

e) H is an elementary divisor ring, that is, for P ∈ Hn×m with rkP = r there exist U ∈
Gln(H) and V ∈ Glm(H) such that

UPV =
[
P1 0
0 0

]
∈ Hn×m with P1 =

⎡⎢⎢⎢⎢⎣
p1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 pr

⎤⎥⎥⎥⎥⎦ ∈ Hr×r (3.10)

where pi 	= 0 for all i and pi | pi+1 for i = 1, . . . , r − 1.

Proof: The parts a) – d) hold in general for matrices over commutative Bézout-domains.
The proof of these parts is identical with that given for principal ideal domains in [13,
p. 31–36]. Part e) follows from Lemma 3.4, as shown in [12, p. 473] for arbitrary adequate
rings. �

The existence of a lcm for elements p, q ∈ H as we proved in Prop. 3.1 g) can also be
concluded from part a) of the above theorem (see e. g. [4, p. 126, Cor. 2]).

4 Correspondence between behaviors and ideals in H

The results in section 3 enable us to show a correspondence between the lattice of behaviors
associated with delay-differential equations of the type (1.1) and the lattice of finitely gener-
ated ideals in H. After introducing multivariable delay-differential operators, an analogous
version of this correspondence will be shown also in that case.

Remember that, as outlined in Def. 2.7 and Remark 2.8, for p ∈ H the operator p̃ ∈
End�(C∞(R)) exists. In particular, for p ∈ R[s, z] ⊂ H this includes the classical case as in
equation (1.1).

Proposition 4.1 For p, q ∈ H\{0} let d ∈ H be a gcd of p, q and c ∈ H be a lcm of p, q.
Then

a) ker p̃ ⊆ ker q̃ ⇐⇒ p | q,
b) ker d̃ = ker p̃ ∩ ker q̃,
c) ker c̃ = ker p̃+ ker q̃,
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d) If d ∈ H×, then ker p̃+ ker q̃ = ker p̃q = ker q̃p,
e) Let a ∈ H be such that ker p̃ ∩ ker q̃ ⊆ ker ã. Then a ∈ pH + qH.

Proof: a)“⇒” Let p = aφ−1, q = bφ−1 with a, b ∈ R and φ ∈ R[s]. Then it is easy to see
that ker p̃ ⊆ ker q̃ implies ker ã ⊆ ker b̃. Thus by (2.2) one has b∗(a∗)−1 = q∗(p∗)−1 ∈ H(C)
and with Prop. 3.1 e) it follows p | q in H.
“⇐” If q = ap with some a ∈ H, then part 3) of Remark 2.8 yields q̃ = ã ◦ p̃ and therefore
ker p̃ ⊆ ker q̃.

b) is a consequence of a) and the existence of a Bézout-equation d = ap+ bq in H together
with part 3) of Remark 2.8.

c)“⊇” follows from a).
“⊆” Let p = ad, q = bd with a, b ∈ H. Then, by Prop. 3.1 g) we can take c = abd as a lcm
of p, q. By coprimeness of a, b there exists f, g ∈ H with 1 = af + bg. Hence w ∈ ker c̃
satisfies w = f̃a(w) + g̃b(w) ∈ ker q̃ + ker p̃.

d) If d ∈ H×, then pq is a lcm of p, q, hence the claim holds by c).

e) follows from a) and b) and the equality dH = pH + qH. �

Notice that the examples 2.9 and 3.3 correspond to the situation given in a) and b) of the
above proposition.

Now we will come to the multivariable case. From Remark 2.8 we conclude that for a matrix
P = (pij) ∈ Hn×m the operator

P̃ : C∞(Rm) −→ C∞(Rn)

(w1, . . . , wm)t �−→ (
m∑
j=1

p̃1j(wj), . . . ,
m∑
j=1

p̃nj(wj))t

is well-defined. Thus the behavior, defined by a system of delay-differential equations, can
be described as ker P̃ with some P ∈ Rn×m or in the more general case P ∈ Hn×m.

Remark 4.2

a) The map P �→ P̃ from Hn×m to Hom�(C∞(Rm), C∞(Rn)) is R-linear, injective and
satisfies P̃Q = P̃ ◦ Q̃ for P ∈ Hn×m, Q ∈ Hm×l.

b) Analogously to the scalar case in Def. 2.4 a) the map

Hn×m −→ H(C)n×m

P �−→ P ∗(s) := P (s, e−s)

is a well-defined R-linear map and satisfies (PQ)∗(s) = P ∗(s)Q∗(s) for P ∈ Hn×m, Q ∈
Hm×l.

Let us first list some properties of the operator P̃ .
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Proposition 4.3 Let P ∈ Hn×m. Then

a) If n = m and P ∈ Gln(H), then P̃ is bijective and P ∗(s) ∈ Gln(C) for all s ∈ C.

b) P̃ is surjective if and only if rkP = n.

c) The following properties are equivalent: i) P̃ is injective, ii) rkP ∗(s) = m for all s ∈ C,
iii) there exists Q ∈ Hm×n with QP = Im.

Proof: a) follows from the existence of Q ∈ Hn×n with PQ = QP = In together with
Remark 4.2.

b) Let rkP = r ≤ n. By Thm. 3.5 e) there exist U ∈ Gln(H) and V ∈ Glm(H) so that UPV
is as in (3.10). By a) P̃ is surjective iff ŨPV is surjective and together with Prop. 2.10 this
holds iff r = n.

c) All three properties are invariant under multiplication with unimodular matrices from the
left or from the right. Thus, using again Thm. 3.5 e), we can restrict ourselves to diagonal
P . Since all three properties imply rkP = m, we can assume

P =
[
P1

0

]
∈ Hn×m with P1 = diag(p1, . . . , pm) ∈ Hm×m.

Now i) implies the injectivity of p̃i, thus, with (2.2) and Prop. 3.1 b), pi ∈ H×. This yields
ii). In the same way, ii) leads to pi ∈ H× for all i and iii) can be concluded. The implication
“iii) ⇒ i)” follows from Remark 4.2 a). �

Now we can generalize part of the results in Prop. 4.1 to the multivariable case.

Proposition 4.4 Let P ∈ Hn×m, Q ∈ Hl×m and D ∈ Hm×m be a gcrd of P, Q. Then

a) ker P̃ ∩ ker Q̃ = ker D̃,

b) P is a right divisor of Q if and only if ker P̃ ⊆ ker Q̃,

c) under the condition rkP = n, rkQ = l the following holds true: ker P̃ = ker Q̃ iff n = l
and P = UQ for some U ∈ Gln(H).

Proof: a) Since “⇒” of b) holds by Remark 4.2 a), part a) follows from the existence of a
Bézout-equation for D (see Thm. 3.5 c)).

b) It remains to prove “⇐”.
Let r = rkP and U ∈ Gln(H), V ∈ Glm(H) be such that P ′ = UPV is as in (3.10). Denoting
Q′ = UQV , Prop. 4.3 a) implies ker P̃ ′ ⊆ ker Q̃′. This yields Q′ = [R, 0] with R ∈ Hl×r and
moreover, ker p̃j ⊆ ker R̃ij for all j = 1, . . . , r and i = 1, . . . , l. Hence, using Prop. 4.1 a) we
get the existence of A ∈ Hl×n such that AP ′ = Q′ and therefore U−1AUP = Q.

c) “⇐” is obvious.
“⇒” By b) there exist P = UQ and Q = V P for some U ∈ Hn×l, V ∈ Hl×n. Then the full
rank assumption implies V U = Il and UV = In which leads to the desired result. �
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5 Controllability

In this section we will generalize the well-known Hautus-criterion for controllability to delay-
differential systems. For time-delay state-space-systems this criterion characterizes spectral
controllability, as it is known from e. g. [18] and [2]. In the behavioral context this criterion
is established for finite-dimensional discrete- or continuous-time AR-systems (see e. g. [22,
Prop. 4.3]) and, very recently, in [19] for exactly the same situation of delay-differential
equations as presented in the paper at hand. However, the proof in [19] uses quite different
methods than those developed in this paper.

Whereas controllability for state-space-systems is formulated, of course, in terms of control
functions and state trajectories, we do not have this possibility for behaviors. Hence we will
use the notion of controllability as defined in [22]. For this we have to introduce first the
concatenation of two functions.

Definition 5.1 Let −∞ ≤ a1 < a2 ≤ b1 < b2 ≤ ∞ and w1 : (a1, b1) → Rm and w2 :
[a2, b2) → Rm be two functions. For t0 ∈ [a2, b1] denote by w1∧t0w2 : (a1, b2) → Rm the
following concatenation of w1 and w2 at t0

(w1∧t0w2)(t) :=
{

w1(t) for a1 < t < t0
w2(t) for t0 ≤ t < b2

Using this definition, a behavior is called controllable if it is closed under concatenation in
the sense given below. In [22, pp. 186] one can find the system theoretic justification of this
notion.

Definition 5.2 Let B be a shift-invariant subspace of C∞(Rm). Then B is called control-
lable, if it satisfies: for all w, w′ ∈ B there exists t0 ≥ 0 and c ∈ C∞([0, t0),Rm) with
w∧0c∧t0σt0w′ ∈ B.

The requirement w∧0c∧t0σt0w′ ∈ B yields in particular, that the concatenation is in
C∞(Rm).

Note that C∞(Rm) is controllable, more strongly C∞(Rm) is controllable in arbitrary short
time: for all w, w′ ∈ C∞(Rm) and all t0 > 0 there exists c ∈ C∞([0, t0),Rm) with
w∧0c∧t0σt0w′ ∈ C∞(Rm).

Since we introduce the concept of controllability only for shift-invariant subspaces, it makes
sense to consider only controllability at time zero.

Whereas it is obvious that for U ∈ R[s]n×m and w, w′ ∈ C∞(Rm) it is Ũ(w∧0w
′) =

Ũ(w)∧0Ũ(w′) if w∧0w
′ is sufficiently differentiable at t0 = 0, it is a priori not clear, that

Ũ(w∧0w
′) is a sort of concatenation of Ũ(w) and Ũ(w′) if U ∈ R[s, z]n×m or even U ∈ Hn×m.

Lemma 5.3 Let U =
∑L

j=0 Ujz
j ∈ R[s, z]n×m with Uj ∈ R[s]n×m. Further let w, w′ ∈

C∞(Rm), t0 ∈ R with w∧t0w′ ∈ C∞(Rm). Then there exists c ∈ C∞([t0, t0 + L),Rn) so that
Ũ(w∧t0w′) = Ũ(w)∧t0c∧t0+LŨ(w′).
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Proof: A direct calculation shows

Ũ(w∧t0w′)(t) =
L∑
j=0

Ũj(w∧t0w′)(t− j) =
L∑
j=0

(Ũj(w)∧t0 Ũj(w′))(t − j)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑L

j=0 Ũj(w
′)(t− j) = Ũ(w′)(t) if t ≥ t0 + L

c(t) if t0 ≤ t < t0 + L∑L
j=0 Ũj(w)(t− j) = Ũ(w)(t) if t < t0

for some function c : [t0, t0 + L) → Rn. Hence Ũ(w∧t0w′) = Ũ(w)∧t0c∧t0+LŨ(w′). Since
Ũ(w∧t0w′) ∈ C∞(Rn), we also get c ∈ C∞([t0, t0 + L),Rn). �

With this knowledge we can prove

Lemma 5.4 Let B be a shift-invariant linear controllable subspace of C∞(Rm) and let
U ∈ Hn×m. Then Ũ(B) is a shift-invariant linear controllable subspace of C∞(Rn).

Proof: Since B is shift-invariance, it is enough to consider U =
∑L

j=0 Ujz
j ∈ R(s)[z]n×m

with Uj ∈ R(s)n×m.

Let w, w′ ∈ B. Then σLw′ ∈ B and there exist t0 ≥ 0 and c ∈ C∞([0, t0),Rm) so that
w̄ := w∧0c∧t0σt0+Lw′ ∈ B.

1. case: Let Uj ∈ R[s]n×m for all j, thus U ∈ R[s, z]n×m. Then by Lemma 5.3 we
get the existence of c′ ∈ C∞([0, t0 + L),Rn) so that Ũ(w̄) = Ũ(w∧0c∧t0σt0+Lw′) =
Ũ(w)∧0c

′∧t0+LŨ(σt0+Lw′) = Ũ(w)∧0c
′∧t0+Lσ

t0+LŨ(w′) ∈ Ũ(B). Since w, w′ ∈ B were
arbitrary, this yields the controllability of Ũ(B).

2. case: Let Uj = Vjφ
−1 with Vj ∈ R[s]n×m. Put V =

∑L
j=0 Vjz

j ∈ R[s, z]n×m. Then
U = V φ−1 and by definition Ũ(w̄) = Ṽ (v), if v ∈ C∞(Rm) fulfills φ̃(v) = w̄.

As in the first case, we shall show that Ũ(w̄) is a concatenation of Ũ(w) and σt0+LŨ(w′), so
that Ũ(w̄) ∈ Ũ(B) implies the controllability of Ũ(B). In order to do so, we will construct
a solution of φ̃(v) = w̄ which corresponds to the special form of w̄ = w∧0c∧t0σt0+Lw′. For
this let c′ ∈ C∞([0, t0),Rm) be so that φ̃(c′) = c. Then the solutions vi ∈ C∞(Rm), i = 1, 2
of

φ̃(v1) = w, v
(ν)
1 (0) = c′(ν)(0) for ν = 0, . . . ,deg φ− 1

φ̃(v2) = σt0+Lw′, v
(ν)
2 (t0) = c′(ν)(t0) for ν = 0, . . . ,deg φ− 1

satisfy v := v1∧0c
′∧t0v2 ∈ C∞(Rm) and φ̃(v) = w̄. Moreover, Ṽ (v1) = Ũ(w), Ṽ (v2) =

Ũ(σt0+Lw′). Now, by the first case of this proof there exists c′′ ∈ C∞([0, t0 +L),Rn) so that

Ũ(w̄) = Ṽ (v) = Ṽ (v1∧0c
′∧t0v2) = Ṽ (v1)∧0c

′′∧t0+LṼ (v2) = Ũ(w)∧0c
′′∧t0+LŨ(σt0+Lw′)

= Ũ(w)∧0c
′′∧t0+Lσt0+LŨ(w′) ∈ Ũ(B).

�

Now we can prove the main part of this section
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Theorem 5.5 Let P ∈ Hn×m. Then ker P̃ is controllable if and only if rkP ∗(s) = rkP for
all s ∈ C.

Proof: a) We first prove the scalar case p ∈ H. If p = 0 then obviously ker p̃ = C∞(R) is
controllable. Let p 	= 0.
“⇐” holds, since ker p̃ = {0} if p ∈ H×.
“⇒” Let w1 ∈ ker p̃. Then there exist t0 > 0 and some c ∈ C∞([0, t0),R) with v :=
w1∧0c∧t00 ∈ ker p̃ and Prop. 2.10 b) implies v = 0, hence, again by Prop. 2.10 b), w1 = 0.
Therefore controllability of ker p̃ implies ker p̃ = {0} and from Prop. 3.1 b) it follows p ∈ H×.

b)Let P ∈ Hn×m. Using Thm. 3.5 e) and Lemma 5.4 we can restrict ourselves to the case
of P being as in (3.10).
“⇐” The assumption on the rank implies that pj ∈ H× for j = 1, . . . , r and therefore ker P̃ =
{(0, . . . , 0, wr+1, . . . , wm)t|wi ∈ C∞(R), i = r + 1, . . . ,m} which is indeed controllable.
“⇒” The controllability of ker P̃ yields the controllability of ker p̃j for j = 1, . . . , r. Hence
by the scalar case pj ∈ H× and the desired conclusion follows. �

Conclusions.
As can be seen from section 4) and 5), the ring H seems to be the adequate object for an
algebraic treatment of delay-differential equations as (1.1) and (1.2). Once the algebraic
properties of H are established, the translation into properties of the solution spaces are
nearly straightforward.

In a forthcoming paper it will be shown, how the existence of image-representations for the
systems under investigation can be characterized with the help of this algebraic framework.
Moreover, the analytical meaning of the operators in H has to be clearified.

A Appendix

Proof of Prop. 2.10:
a) Let p ∈ H\{0} and v ∈ C∞(R). We have to find w ∈ C∞(R) fulfilling p̃(w) = v.

First, it suffices to assume p ∈ R, for let p = qφ−1 with q ∈ R, φ ∈ R[s]. If we find
f ∈ C∞(R) with q̃(f) = v and put φ̃(f) = w, then we have p̃(w) = v. Hence we need to
show the surjectivity of q̃.

Thus let p ∈ R and, more precisely,

p =
L∑
j=0

pjz
j ∈ R[s, z] with pj ∈ R[s] and L ≥ 1.

Put p0 =
∑l

i=0 ais
i, al = 1 and pL =

∑r
i=0 bis

i, br 	= 0.

We will construct piecewise a function w ∈ C∞(R) which fulfills for all t ∈ R

p̃(w)(t) =
L∑
j=0

p̃j(w)(t − j) = v(t). (A.1)
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The idea of the construction is as follows: Start with a function w0 ∈ C∞[0, L]. In order
to extend w0 via concatenation (see Def. 5.1) to a solution of p̃(w) = v one has to solve
successively ordinary inhomogeneous differential equations of the type

p̃0(w̄k+1) = v − ˜(p− p0)(wk) on the time interval [L+ k, L+ k + 1] for k ≥ 0,

p̃L(w̄k) = σ−L
(
v − ˜(p− pL)(wk+1)

)
on the time interval [k, k + 1] for k ≤ −1,

where the right hand sides are determined successively by

wk = w0∧Lw̄1∧L+1 . . .∧L+k−1w̄k on [0, L+ k] for k ≥ 1
wk+1 = w̄k+1∧k+2 . . .∧−1w̄−1∧0w0 on [k + 1, L] for k < −1.

The initial conditions at the points L+k (for k ≥ 0) and k+1 (for k ≤ −1) have, of course,
to be prescribed such that the concatenations are as smooth as possible. If one chooses
the initial function w0 ∈ C∞[0, L] appropriately, this procedure leads indeed to infinitely
smooth concatenations and thus to a solution w ∈ C∞(R) of p̃(w) = v.

The choice of the function w0 is carried out in step i) of the following elaboration. Step ii)
and iii) give the details of the extension of w0 to a solution of p̃(w) = v on the positive real
line, whereas step iv) extends w0 for negative time.

i) Let f ∈ C∞[0, L] satisfy

l∑
i=0

aif
(i)(t) = v(t), t ∈ [0, L], f (ν)(L) = 0 for ν = 0, . . . , l − 1.

(In the case l = 0 one has no freedom for the initial conditions. In this case the rest of the
proof in ii) and iii) works analogously.) Let g ∈ C∞[0, L] be such that g|[0,L−1] = 0 and
g|[L−0.5,L] = 1. Put w0 := fg ∈ C∞[0, L]. Then w0|[0,L−1] = 0 and

w
(ν)
0 (L) = f (ν)(L) =

{
0 for ν = 0, . . . , l − 1
v(ν−l)(L) −∑l−1

i=0 aiw
(ν−l+i)
0 (L) for ν ≥ l.

ii) Let w̄1 ∈ C∞[L,L+ 1] fulfill

l∑
i=0

aiw̄
(i)
1 (t) = v(t) −

L∑
j=1

p̃j(w0)(t− j), t ∈ [L,L+ 1], w̄(ν)
1 (L) = 0 for ν = 0, . . . , l − 1.

By differentiation one checks that w̄(ν)
1 (L) = w

(ν)
0 (L) for all ν ∈ N0 and thus w1 := w0 ∧L

w̄1 ∈ C∞[0, L+ 1] fulfills
∑L

j=0 p̃j(w1)(t− j) = v(t) for t ∈ [L,L+ 1].

iii) Inductively, if wk ∈ C∞[0, L+ k] satisfies
∑l

i=0 aiw
(i)
k (t) = v(t)−∑L

j=1 p̃j(wk)(t− j) for
t ∈ [L,L+ k], then take the solution w̄k+1 ∈ C∞[L+ k, L+ k + 1] of the ODE

l∑
i=0

aiw̄
(i)
k+1(t) = v(t) −

L∑
j=1

p̃j(wk)(t− j), t ∈ [L+ k, L+ k + 1]
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with initial conditions w̄(ν)
k+1(L+ k) = w

(ν)
k (L+ k) for ν = 0, . . . , l− 1. From this we obtain

again by differentiation w̄
(ν)
k+1(L + k) = w

(ν)
k (L + k) for all ν ∈ N0 and therefore we get

a solution wk+1 := wk ∧L+k w̄k+1 ∈ C∞[0, L + k + 1]. Hence we can construct a function
w+ ∈ C∞[0,∞) which satisfies (A.1) for t ≥ L.

iv) Let w̄−1 ∈ C∞[−1, 0] be satisfying

r∑
i=0

biw̄
(i)
−1(t) = v(t+ L) −

L−1∑
j=0

p̃j(w+)(t+ L− j), w̄(ν)
−1(0) = 0 for ν = 0, . . . , r − 1

for t ∈ [−1, 0]. Then w̄
(ν)
−1 (0) = 0 for all ν ∈ N0 and the function w−1 := w̄−1 ∧0 w+ ∈

C∞[−1,∞) satisfies (A.1) for t ≥ L − 1. In an analogous way as in iii) we can proceed
inductively and find finally a solution w ∈ C∞(R) for p̃(w) = v.

b) Put p = qφ−1 with q ∈ R and φ ∈ R[s] and let w ∈ C∞(R) be given as in Prop. 2.10 b).
It is easy to see that there exists v ∈ C∞(R) with φ̃(v) = w and v|[k,k+L] = 0. But then
0 = p̃(w) = q̃(v) and the proof of a) shows by proceeding step by step on the intervals
[j, j + 1], that v = 0 and thus w = 0. �

The following two lemmata are used in the proof of Thm. 3.2. The first one states the
interpolation property for polynomials: given a finite set of points in the complex plane,
there exists a polynomial f ∈ C[s], such that a specified number of derivatives f (ν) take
prescribed values at those points. If the required situation is symmetric with respect to
complex conjugation, one can find a real interpolation polynomial.

Lemma A.1 Let α1, . . . , αr ∈ C\R, αr+1 . . . , αr+t ∈ R, k1, . . . , kr+t ∈ N0, cjν ∈ C for
j = 1, . . . , r and ν = 0, . . . , kj and cjν ∈ R for j = r + 1, . . . , r + t and ν = 0, . . . , kj . Then
there exists a unique f ∈ R[s] satisfying

deg f ≤ N := 2
∑r

j=1(kj + 1) +
∑r+t

j=r+1(kj + 1) − 1

f (ν)(αj) = cjν for j = 1, . . . , r + t, ν = 0, . . . , kj

f (ν)(αj) = cjν for j = 1, . . . , r, ν = 0, . . . , kj .

Proof: The existence and uniqueness of f ∈ C[s] with the desired properties can be found
e. g. in [5, p. 37]. But this already implies f ∈ R[s], since with f =

∑N
j=0 fjs

j ∈ C[s] also
f̄ =

∑N
j=0 f̄js

j fulfills the above requirements. �

The second lemma is just a rather specific calculation. It is used to show that the interpo-
lation requirements given in (3.8) can be satisfied by one polynomial f ∈ R[s].

Lemma A.2 Let K ∈ N0 and aj , bj, pj, qj ∈ C for j = 0, . . . ,K. Let p0 	= 0 	= q0 and

n∑
m=0

(
n

m

)
bmqn−m = −

n∑
m=0

(
n

m

)
ampn−m for n = 0, . . . ,K. (A.2)

Put fn := q−1
0 [an −∑n−1

m=0

(
n
m

)
qn−mfm] for n = 0, . . . ,K. Then also the recursion fn =

−p−1
0 [bn +

∑n−1
m=0

(n
m

)
pn−mfm] is valid for n = 0, . . . ,K.

20



Proof: For n = 0 it is b0q0 = −a0p0, hence f0 = a0
q0

= − b0
p0

.

Suppose, the claim holds true for f0, . . . , fn, n < K. Then one calculates

q0fn+1 = an+1 −
n∑

m=0

(n+1
m

)
qn+1−mfm

= an+1 +
n∑

m=0

(n+1
m

)
qn+1−m

[
1
p0

(
bm +

m−1∑
k=0

(m
k

)
pm−kfk

)]

= an+1 +
1
p0

[
n∑

m=0

(n+1
m

)
qn+1−mbm +

n∑
m=1

m−1∑
k=0

(n+1
m

)(m
k

)
qn+1−mpm−kfk

]

=
1
p0

[
−bn+1q0 −

n∑
m=0

(n+1
m

)
ampn+1−m +

n−1∑
k=0

n∑
m=k+1

(n+1
m

)(m
k

)
qn+1−mpm−kfk

]

= − 1
p0

[
bn+1q0 +

n∑
m=0

(n+1
m

)
ampn+1−m −

n∑
m=1

m−1∑
k=0

(n+1
m

)(m
k

)
pn+1−mqm−kfk

]

= − 1
p0

[
bn+1q0 + q0

n∑
m=0

(n+1
m

)
pn+1−m

1
q0

(
am −

m−1∑
k=0

(m
k

)
qm−kfk

)]

= − q0
p0

[
bn+1 +

n∑
m=0

(n+1
m

)
pn+1−mfm

]

where the fourth equation follows from (A.2) and the fifth one from

n∑
m=k+1

(n+1
m

)(m
k

)
qn+1−mpm−k =

n∑
l=k+1

( n+1
n+1+k−l

)(n+1+k−l
k

)
ql−kpn+1−l

=
n∑

l=k+1

(n+1
l

)( l
k

)
ql−kpn+1−l.

�
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