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Abstract: In this paper, we study convolutional codes with a specific cyclic structure.
By definition, these codes are left ideals in a certain skew polynomial ring. Using that
the skew polynomial ring is isomorphic to a matrix ring we can describe the algebraic
parameters of the codes in a more accessible way. We show that the existence of such
codes with given algebraic parameters can be reduced to the solvability of a modified rook
problem. It is our strong belief that the rook problem is always solvable, and we present
solutions in particular cases.
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1 Introduction

Convolutional codes (CC’s, for short) form an important class of error-correcting codes
in engineering practice. The mathematical theory of these codes has been set off by the
seminal papers of Forney [3] and Massey et al. [15], and the progress ever since is reflected
by, for instance, the books [12, 19] and the article [16]. Several directions have been
pursued. In the 1970s, a lot of effort has been made to construct powerful CC’s with the
aid of good block codes, see [14, 13]. This idea has been resumed in the papers [24, 7].
Furthermore, the methods of linear systems theory have been utilized in order to gain
a deeper mathematical understanding of CC’s. We refer to the papers [15, 21, 23, 10]
for further details and constructions. A third direction in the theory of CC’s developed
when codes with some additional algebraic structure were studied. Besides the recently
introduced classes of Goppa convolutional codes [1, 17] and group convolutional codes [2],
the main class of such codes are cyclic convolutional codes.

Cyclic structure for CC’s has been investigated for the first time in the papers [18, 20].
One of the crucial observations revealed that CC’s that are invariant under the ordinary
cyclic shift have degree zero, that is, they are cyclic block codes. This insight has led to
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a more complex notion of cyclicity for CC’s which can be summarized as follows. Cyclic
convolutional codes (CCC’s, for short) are direct summands of F[z]n that are at the same
time left ideals in a skew polynomial ring A[z;σ], where A = F[x]/〈xn − 1〉 and σ is an F-
automorphism of A. During the last couple of years a detailed algebraic theory of CCC’s
has been developed in [8, 6]. Among other things it has been shown that CCC’s are
principal left ideals in A[z;σ] and, using a type of Gröbner basis theory, one can compute
reduced generator polynomials from which all algebraic parameters of the code can easily
be read off. The details will be given later on in Theorem 3.5. Classes of CCC’s with good
error-correcting properties have been presented in [5, 9].

In this paper we want to continue the investigation of CCC’s. We restrict ourselves to
a particular class of automorphisms. In that case the skew polynomial ring A[z;σ] turns
out to be isomorphic to a matrix ring over a commutative polynomial ring. This allows us
to easily construct generator polynomials of CCC’s with prescribed algebraic parameters.
Moreover, we discuss the existence of CCC’s with any given algebraic parameters and will
show that it reduces to a particular combinatorial problem resembling the classical rook
problem. We can solve particular instances of that problem, but unfortunately not the
general case. However, we strongly believe that the combinatorial problem is solvable for
all possible cases.

The outline of the paper is as follows. In the next section we review important notions
from convolutional coding theory and introduce the algebraic framework for CCC’s. In
Section 3 we concentrate on a particular class of CCC’s and establish an isomorphism
between the associated skew polynomial ring and a certain matrix ring. We translate the
main notions needed for the theory of CCC’s into the matrix setting. In Section 4 we
construct particular CCC’s and discuss the existence of CCC’s with given Forney indices.
The existence of such codes reduces to a combinatorial problem followed by a problem
of constructing polynomial matrices with certain degree properties. After presenting a
proof of the matrix problem we discuss and solve particular instances of the combinatorial
problem in Section 5. We close the paper with a short section illustrating how to generalize
the results to codes that are cyclic with respect to a general automorphism.

2 Preliminaries on Cyclic Convolutional Codes

Throughout this paper let F be a finite field with q elements. A convolutional code of
length n and dimension k is a submodule C of F[z]n having the form

C = im G := {uG
∣∣u ∈ F[z]k},

where G is a basic matrix in F[z]k×n, i. e. rankG(λ) = k for all λ ∈ F (with F being an
algebraic closure of F). We call such a matrix G an encoder, and the number deg(C) :=
deg(G) := max{deg(M) | M is a k-minor of G} is said to be the degree of the encoder G
or of the code C. Recall that the requirement of G being basic (rather than just having
full row rank over F[z]) is equivalent to C being a direct summand of the module F[z]n.
Obviously, two basic matrices G, G′ ∈ F[z]k×n satisfy im G = im G′ if and only if G′ = UG
for some U ∈ GLk(F[z]) := {V ∈ F[z]k×k | det(V ) ∈ F\{0}}. It is well known [4, p. 495]
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that each CC admits a minimal encoder. Here a matrix G ∈ F[z]k×n is said to be minimal
if the sum of its row degrees equals deg(G), where the degree of a polynomial row vector is
defined as the maximal degree of its entries. For details see, e. g., [4, Main Thm.] or [16,
Thm. A.2]. Such a minimal encoder is in general not unique; the row degrees of a minimal
encoder, however, are, up to ordering, uniquely determined by the code and are called the
Forney indices of the code or of the encoder. It follows that a CC has a constant encoder
matrix if and only if the degree is zero. In that case the code is, in a natural way, a block
code.

Beyond these purely algebraic concepts the most important notion in error-control coding
is certainly the weight. For a polynomial vector v =

∑N
j=0 v(j)zj ∈ F[z]n, where v(j) ∈ Fn,

one defines its weight as wt(v) =
∑N

j=0 wt(v(j)), with wt(v(j)) denoting the (Hamming)
weight of the vector v(j) ∈ Fn. Just like for block codes the distance of a code C is defined
as dist(C) = min{wt(v) | v ∈ C, v 6= 0}.

Let us now turn to the notion of cyclicity (for details we refer to [8, 6]). We will restrict
ourselves to codes where the length n is coprime with the field size q. From the theory of
cyclic block codes recall the standard identification

p : Fn −→ A := F[x]/〈xn − 1〉, (v0, . . . , vn−1) 7−→
n−1∑
i=0

vix
i (2.1)

of Fn with the ring of polynomials modulo xn − 1. Extending this map coefficientwise
we can identify the polynomial module F[z]n = {

∑N
ν=0 zνvν | N ∈ N0, vν ∈ Fn} with the

polynomial ring

A[z] :=
{ N∑

ν=0

zνaν

∣∣∣N ∈ N0, aν ∈ A
}

.

Following the theory of cyclic block codes one would like to declare a code C ⊆ F[z]n

cyclic if it is invariant under the cyclic shift acting on F[z]n, or, equivalently, if its image
in A[z] is an ideal. However, it has been shown in various versions in [18, Thm. 3.12],
[20, Thm. 6], and [8, Prop. 2.7] that every CC with this property has degree zero. In
other words, this notion does not lead to any codes other than cyclic block codes. Due
to this result a more general notion of cyclicity has been introduced and discussed in the
papers mentioned above. In order to present this notion we need the group AutF(A) of
all F-automorphisms on A. It is clear that each automorphism σ ∈ AutF(A) is uniquely
determined by the single value σ(x) ∈ A, but not every choice for σ(x) determines an
automorphism on A. Indeed, since x generates the F-algebra A the same has to be true
for σ(x), and we obtain for a ∈ A

σ(x) = a determines an
F-automorphism on A

}
⇐⇒

{
1, a, . . . , an−1 are linearly independent
over F and an = 1.

(2.2)

Fixing an arbitrary automorphism σ ∈ AutF(A) we define a new multiplication on the
F[z]-module A[z] via

az = zσ(a) for all a ∈ A. (2.3)

Along with associativity, distributivity, and the usual multiplication inside A this turns
A[z] into a skew polynomial ring which we will denote by A[z;σ]. Notice that A[z;σ] is
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non-commutative unless σ is the identity. Moreover, the map p from (2.1) can be extended
to

p : F[z]n −→ A[z;σ],
N∑

ν=0

zνvν 7−→
N∑

ν=0

zνp(vν), (2.4)

this way yielding an isomorphism of left F[z]-modules. Now we declare a submodule
C ⊆ F[z]n to be σ-cyclic if p(C) is a left ideal in A[z;σ]. It is straightforward to see
that the latter is equivalent to the F[z]-submodule p(C) of A[z;σ] being closed under left
multiplication by x. Combining this with the definition of CC’s we arrive at the following
notion.

Definition 2.1 A submodule C ⊆ F[z]n is called a σ-cyclic convolutional code (σ-CCC,
for short) if C is a direct summand of F[z]n and p(C) is a left ideal in A[z;σ].

In the papers [18, 8, 6, 5, 9] the algebraic properties of these codes have been investigated
in detail (the main results are summarized in Theorem 3.5 below) and plenty of CCC’s,
all optimal with respect to their free distance, have been presented. In [5] a class of
one-dimensional CCC’s has been constructed all of which members are MDS codes, that
is, they have the best distance among all one-dimensional codes with the same length,
same degree and over any finite field. This result has been generalized to a class of Reed-
Solomon convolutional codes in [9]. In [2] the concept of cyclicity has been generalized to
group convolutional codes.

Let us close this section with some basic notation. In any ring we will denote left, respec-
tively right, ideals by

•〈 · 〉, respectively 〈 · 〉• . As usual, ideals in commutative rings will
be written as 〈 · 〉. The group of units in a ring R will be denoted by R×.

3 The Matrix Ring M

In this paper we will restrict ourselves to a more specific class of cyclic codes than those
being introduced in the previous section. Indeed, we will consider the following situation.
Let F be any field with q elements and let n ∈ N≥2 be a divisor of q − 1. Then, using the
Chinese Remainder Theorem, the quotient ring A′ := F[x]/〈xn − 1〉 is isomorphic to the
direct product

A := F× · · · × F︸ ︷︷ ︸
n copies

. (3.1)

The elements of A will be denoted as a = [a1, . . . , an], where ai ∈ F for i = 1, . . . , n.
Observe that F naturally embeds into A via f 7−→ [f, . . . , f ], thus A is an F-algebra. This
algebra structure is isomorphic to the natural F-algebra structure of A′.

The standard F-basis of A is given by {e1, . . . , en}, where

ei = [0, . . . , 1, . . . , 0] with the 1 appearing in the i-th position. (3.2)

Obviously, these are just the primitive idempotents of the ring A, and A = ⊕n
i=1〈ei〉 as a

direct sum of ideals. It is clear that the automorphisms of A are in one-one correspondence
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with the permutations of the primitive idempotents. As a consequence, |AutF(A)| = n!,
see also [8, Cor. 3.2]. In this paper, we will consider only those automorphisms for which
the permutation is a cycle of length n. It is not hard to see that there are exactly (n− 1)!
automorphisms of that kind. Allowing a suitable permutation of the n copies of F, we
may restrict ourselves to the automorphism

σ : A −→ A, σ([a1, . . . , an]) = [an, a1, . . . , an−1]. (3.3)

Then σ(ei) = ei+1 for 1 ≤ i ≤ n− 1 and σ(en) = e1, and we have the identities

σj(ei) = e(i+j−1mod n)+1 for all i = 1, . . . , n and j ∈ N0. (3.4)

As in the previous section, the automorphism σ gives rise to a skew polynomial ring
(A[z;σ],+, · ) where, again, the set {

∑N
ν=0 zνaν | N ∈ N0, aν ∈ A} is equipped with the

usual coordinatewise addition, and where multiplication is defined by the rule az = zσ(a)
for all a ∈ A, see (2.3). As already indicated by the notation above, coefficients of the
polynomials in A[z;σ] are always meant to be the right hand side coefficients. Again, the
left F[z]-module A[z;σ] is isomorphic to F[z]n via the map p from (2.4), and where we use
an isomorphism of A with the quotient ring A′. Thus, A[z;σ] gives us the framework for
the class of CCC’s where the length n divides q−1 and where the underlying automorphism
induces a cycle of length n on the primitive idempotents.

Example 3.1 Let F = F4 = {0, 1, α, α2}, where α2 = α + 1, and let n = 3. Then
A = F × F × F ∼= F[x]/〈x3 − 1〉 = A′ and |AutF(A)| = 6. The automorphisms σ ∈
AutF(A′) are completely determined by their value σ(x) assigned to x, see also (2.2). These
values are given by x, x2, αx, α2x, αx2, α2x2. The two automorphisms inducing cycles of
length 3 are given by σ1(x) = αx and σ2(x) = α2x. Indeed, using the isomorphism
φ : A′ −→ A, f 7−→ [f(1), f(α), f(α2)] the primitive idempotents of A are e1 = [1, 0, 0] =
φ(x2 + x + 1), e2 = [0, 1, 0] = φ(αx2 + α2x + 1), and e3 = [0, 0, 1] = φ(α2x2 + αx + 1).
One easily verifies that σ2(e1) = e2, σ2(e2) = e3, σ2(e3) = e1, thus σ2 satisfies (3.3)
(where, of course, we identify σ2 ∈ AutF(A′) with φσ2φ

−1 ∈ AutF(A)). Likewise, using
the identification A′ −→ A, f 7−→ [f(α2), f(α), f(1)] the automorphism σ1 satisfies (3.3).
Notice that σ2 = σ−1

1 .

In the rest of this section we will show how the skew polynomial ring A[z;σ] can be de-
scribed as a certain matrix ring, and we will translate various properties into the matrix
setting. This will lead us to a new way of constructing CCC’s with given algebraic pa-
rameters. Let us consider the ring F[t]n×n of polynomial matrices in an indeterminate t
and define the subset

M :=
{
(mab) ∈ F[t]n×n

∣∣mab(0) = 0 for all 1 ≤ b < a ≤ n
}
.

Notice that M consists exactly of all matrices where the elements below the diagonal are
multiples of t. It is easy to see that M is a (non-commutative) subring of F[t]n×n.
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Proposition 3.2 Let A[z;σ] and M be as above. Then the map

ξ : A[z;σ] −→ M

N∑
l=0

znl
n−1∑
i=0

zi[cl
i1, c

l
i2, . . . , c

l
in] 7−→

N∑
l=0

tl


cl
01 cl

12 · · · · · · cl
n−1,n

tcl
n−1,1 cl

02 · · · · · · cl
n−2,n

...
. . .

. . .
...

tcl
21

. . .
. . . cl

1n

tcl
11 tcl

22 · · · tcl
n−1,n−1 cl

0n

 (3.5)

is a ring isomorphism.

The identification of A[z;σ] and M was first shown in [11], where it has been studied
for the more general situation of skew polynomial rings over arbitrary semisimple rings
with a monomorphism σ. This general situation has also been used in [2] in order to
classify certain group convolutional codes. Our choice of the semisimple ring A and the
automorphism σ leads to a particularly simple proof which we would like to briefly present.

Proof: It is obvious that each polynomial in A[z;σ] has a unique representation as on
the left hand side of (3.5). Thus the map ξ is well-defined. Moreover, it is obvious that ξ
is bijective and additive, and it remains to show that it is multiplicative. In order to do so,
we firstly observe that ξ(α) = diag(α1, . . . , αn) for any α = [α1, . . . , αn] ∈ A, and secondly,
that

ξ(znl+i) = tl
(

0 In−i

tIi 0

)
=
(

0 In−1

t 0

)nl+i

for all l ∈ N0 and i = 0, . . . , n− 1.

Now the identities ξ(αβ) = ξ(α)ξ(β), ξ(zν+µ) = ξ(zν)ξ(zµ), and ξ(zνα) = ξ(zν)ξ(α),
where ν, µ ∈ N0 and α, β ∈ A, are obvious, and one easily verifies ξ(α)ξ(z) = ξ(z)ξ(σ(α))
for all α ∈ A. Using the additivity of ξ we conclude that ξ is indeed multiplicative, hence
a ring isomorphism. �

For later purposes it will be handy to have an explicit formula for the entries of ξ(g). For

g :=
N∑

l=0

znl
n−1∑
i=0

zi[cl
i1, c

l
i2, . . . , c

l
in] (3.6)

and ξ(g) = (mab) one computes

mab =
N∑

l=0

tl+sgn(a−b)cl
b−a+sgn(a−b)n,b for 1 ≤ a, b ≤ n, (3.7)

where

sgn(x) :=
{

1 if x > 0,
0 else.

It is clear that the subring ξ(F[z]) of M is given by the set of matrices
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N∑
l=0

tl


cl
0 cl

1 · · · · · · cl
n−1

tcl
n−1 cl

0 · · · · · · cl
n−2

...
. . . . . .

...

tcl
2

. . . . . . cl
1

tcl
1 tcl

2 · · · tcl
n−1 cl

0

 where N ∈ N0, cl
i ∈ F, (3.8)

and, defining f ·M := ξ(f)M for f ∈ F[z] and M ∈M, we may impose a left F[z]-module
structure on M making it isomorphic to A[z;σ] as left F[z]-modules. Due to the form
of ξ(f) as given in (3.8) the thus obtained module structure is of course not identical to
the canonical F[t]-module structure of M.

In the sequel we will translate various properties of polynomials in A[z;σ] into matrix
properties in M. First of all we will show how to identify the units in M. This will play
an important role later on when discussing left ideals that are direct summands.

Proposition 3.3 Let M× be the group of units of M. Then M× = M∩GLn(F[t]). In
other words, M ∈M is a unit in the ring M if and only if det(M) ∈ F× := F \ {0}.

As a consequence, left- (or right-) invertible elements in M or in A[z;σ] are units.

Proof: The inclusion “⊆” is clear. For the inclusion “⊇” let M ∈M∩GLn(F[t]). Then
there exists a matrix N ∈ GLn(F[t]) such that MN = I. Substituting t = 0 we obtain
M(0)N(0) = I, thus N(0) = M(0)−1. Since M ∈M the matrix M(0) is upper triangular.
But then the same is true for N(0), showing that N ∈M. �

Let us now turn to properties of the skew polynomial ring A[z;σ] that follow from the
semi-simplicity of A. Since the idempotents e1, . . . , en are pairwise orthogonal and satisfy
e1 + . . . + en = 1 we have

A[z;σ] = 〈 e1 〉
• ⊕ · · · ⊕ 〈 en 〉

•
=

•〈 e1 〉 ⊕ · · · ⊕
•〈 en 〉.

As a consequence, each element g ∈ A[z;σ] has a unique decomposition

g = g(1) + . . . + g(n), where g(a) := eag. (3.9)

The following notions will play a central role. Recall that coefficients of skew polynomials
are always meant to be right hand side coefficients.

Definition 3.4 Let g ∈ A[z;σ].
(a) For a = 1, . . . , n we call g(a) := eag the a-th component of g.
(b) The support of g is defined as Tg :=

{
a | g(a) 6= 0

}
.

(c) We call g delay-free if Tg = Tg0 where g0 ∈ A is the constant term of the polynomial g.
(d) The polynomial g is said to be semi-reduced if the leading coefficients of the compo-

nents g(a), a ∈ Tg, lie in pairwise different ideals 〈eia〉.
(e) The polynomial g is called reduced if no leading term of any component of g is a right

divisor of a term of any other component of g.
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In order to comment on these notions let us have a closer look at the components of a poly-
nomial. Using (3.4) one obtains that, for instance, the first component of a polynomial g
is of the form

g(1) = [c0, 0, . . . , 0]+z[0, c1, 0, . . . , 0]+z2[0, 0, c2, 0, . . . , 0]+ · · · = c0e1 +zc1e2 +z2c2e3 + · · ·

for some cj ∈ F. In general we derive from (3.4)

g(a) =
Na∑
j=0

zjca,je(a+j−1 mod n)+1 for some Na ∈ N0 and ca,j ∈ F (3.10)

for a = 1, . . . , n. In particular, the coefficients of the components are F-multiples of
primitive idempotents. As a consequence, g is semi-reduced if and only if no leading
term of any component of g is a right divisor of the leading term of any other component
of g. Obviously, reducedness implies semi-reducedness, and a polynomial consisting of one
component is always reduced.

The concept of reducedness has been introduced for the skew polynomial ring A[z;σ] in [8,
Def. 4.9]. It proved to be very useful in the theory of CCC’s. In particular, it has led to
the following results concerning minimal encoder matrices and Forney indices of CCC’s,
see [8, Thm. 4.5, Thm. 4.15, Prop. 7.10, Thm. 7.13(b)].

Theorem 3.5 As before let n | (q − 1). Let σ be any automorphism in AutF(A) and
consider the identification p of F[z]n with the skew polynomial ring A[z;σ] as given in (2.4)
and where we identify A with the quotient ring F[x]/〈xn − 1〉.
(1) For every g ∈ A[z;σ] there exists a unit u ∈ A[z;σ]× such that ug is reduced.

(2) Let C ⊆ F[z]n be a σ-CCC. Then there exists a reduced and delay-free polynomial
g ∈ A[z;σ] such that p(C) =

•〈 g 〉 := {fg | f ∈ A[z;σ]}. In particular, the left
ideal p(C) is principal. Moreover, the polynomial g is unique up to left multiplication
by units in A.

(3) Let g ∈ A[z;σ] be a reduced polynomial. Then p−1(
•〈 g 〉) ⊆ F[z]n is a direct summand

of F[z]n if and only if g =
∑

l∈Tg
u(l) for some unit u ∈ A[z;σ]. That is, the σ-CCC’s

are obtained by taking any unit u in A[z;σ] and choosing any collection of components
of u that forms a reduced polynomial.

(4) Let g ∈ A[z;σ] be a reduced polynomial with support Tg = {i1, . . . , ik}. Then C :=
p−1(

•〈 g 〉) = im G = {uG | u ∈ F[z]k}, where

G :=

p−1(g(i1))
...

p−1(g(ik))

 ∈ F[z]k×n. (3.11)

Furthermore, if C is a direct summand of F[z]n then G is a minimal encoder ma-
trix of C. As a consequence, C is a σ-CCC of dimension k with Forney indices
deg g(i1), . . . ,deg g(ik) and degree δ :=

∑k
l=1 deg g(il).

Let us now return to the situation where σ is as in (3.3). Throughout this paper semi-
reduced polynomials will be much more handy than reduced ones, see Proposition 3.10(4)
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below. Fortunately, it can easily be confirmed that the weaker notion of semi-reducedness
is sufficient for the results above to be true. We confine ourselves to presenting the following
details.

Remark 3.6 The results of Theorem 3.5(1) – (4), except for the uniqueness result in (2),
are true for semi-reduced polynomials as well. In order to see this, one has to confirm
that, firstly, all results of [8, Section 4], in particular Proposition 4.10, Corollary 4.13, and
Lemma 4.14, with the exception of the uniqueness result in Theorem 4.15, remain true for
semi-reduced polynomials. Secondly one can easily see that Theorem 7.8, Proposition 7.10,
Corollary 7.11, Theorem 7.13, and Corollary 7.15 of [8, Section 7] remain true if one
replaces reducedness by semi-reducedness. In all cases the proofs in [8] remain literally
the same.

Due to part (3) of the theorem above the following notion will be important to us.

Definition 3.7 A polynomial g ∈ A[z;σ] is called basic if there exists a unit u ∈ A[z;σ]×

such that g =
∑

l∈Tg
u(l).

According to part (3) and (4) of Theorem 3.5, see also Remark 3.6, a semi-reduced poly-
nomial g is basic if and only if the matrix G in (3.11) is basic.

Let us now have a closer look at semi-reduced polynomials. From (3.10) we see immediately
that

g is semi-reduced ⇐⇒

{
the numbers (a + deg g(a) − 1 mod n) + 1, a ∈ Tg,

are pairwise different.
(3.12)

Moreover, one has

g ∈ A[z;σ]× and g semi-reduced =⇒ g ∈ A×. (3.13)

Indeed, suppose 1 = hg = (he1 + . . . + hen)g =
∑n

l=1 helg. Since 〈el〉 ∼= F we get
deg(helg) = deg(hel) + deg(elg) and the leading coefficient of helg is in the same ideal as
the leading coefficient of g(l). Now semi-reducedness of g shows that no cancelation of the
leading coefficients in

∑n
l=1 helg is possible and thus hg = 1 implies that deg(g(l)) = 0 for

all l = 1, . . . , n.

It is easy to translate these notions into the setting of the matrix ring M. Indeed, defining
the standard basis matrices

Eab ∈ Fn×n via
(
Eab

)
ij

=
{

1 if (i, j) = (a, b)
0 if (i, j) 6= (a, b)

}
for a, b = 1, . . . , n (3.14)

we obtain
ξ(ea) = Eaa. (3.15)

Thus,
ξ(g(a)) = ξ(ea)ξ(g) = Eaaξ(g) (3.16)

is a matrix where at most the a-th row is nonzero. It is obtained from ξ(g) by deleting all
other rows. This gives rise to the following definition.
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Definition 3.8 Let M = (mab) ∈M. Then we define the support of M to be

Supp (M) := {a | the a-th row of M is non-zero}.

We say that M is delay-free if maa(0) 6= 0 for all a ∈ Supp (M).

By definition Supp
(
ξ(g)

)
= Tg for all g ∈ A[z;σ]. Furthermore, the very definition of ξ

shows that g is delay-free if and only if ξ(g) is. Finally, we have the implication

g is delay-free =⇒ rank F[t]ξ(g) = rank Fξ(g)|t=0 = |Tg|. (3.17)

This follows by observing that the nonzero rows of ξ(g)|t=0 form a matrix in row echelon
form with pivot positions in the columns with indices in Tg.

In order to express semi-reducedness in terms of the matrix ξ(g) we need the following
concept.

Definition 3.9 Let M =
(
mab

)
∈M and put dab := deg(mab) for a, b = 1, . . . , n (where,

as usual, the zero polynomial has degree −∞). The degree matrix of M is defined as

D(M) =


nd11 nd12 + 1 nd13 + 2 · · · nd1n + n− 1

nd21 − 1 nd22 nd23 + 1 · · · nd2n + n− 2
nd31 − 2 nd32 − 1 nd33 · · · nd3n + n− 3

...
...

...
. . .

...
ndn1 − n + 1 ndn2 − n + 2 ndn3 − n + 3 · · · ndnn

 .

Hence D(M)ab = ndab − a + b ∈ N0 ∪ {−∞} for a, b = 1, . . . , n. We call a row of D(M)
trivial if all entries are −∞. The matrix M is said to be semi-reduced if the maxima in
the non-trivial rows of D(M) appear in different columns.

Obviously, the trivial rows of D(M) correspond to the zero rows of M . Furthermore, we
have the following properties.

Proposition 3.10 Let g ∈ A[z;σ] and M = ξ(g) = (mab). For a, b = 1, . . . , n put
dab = deg mab.

(1) In each row and column of D(M) the entries different from −∞ are pairwise different.
In particular, each non-trivial row has a unique maximum.

(2) For all a, b = 1, . . . , n we have ξ
(
g(a)eb

)
= EaaMEbb = mabEab and deg

(
g(a)eb

)
=

D(M)ab. Furthermore,

deg g(a) = max
1≤b≤n

D(M)ab for all a = 1, . . . , n (3.18)

and
deg g = max

1≤a≤n
(deg g(a)) = max

1≤a,b≤n
D(M)ab.

(3) g is semi-reduced if and only if M is semi-reduced.
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(4) For a ∈ Supp (M) let δa := max{dab | 1 ≤ b ≤ n} and put ba := max{b | dab = δa};
that is, ma,ba is the rightmost entry in the a-th row of M having maximal degree δa.
Then max1≤b≤nD(M)ab = D(M)a,ba . As a consequence, M is semi-reduced if and
only if the indices ba, a ∈ Supp (M), are pairwise different.

Proof: Part (1) is trivial. The first assertion of (2) follows from (3.15) and the multi-
plicativity of ξ. As for the degree of g(a)eb let g be as in (3.6). Using (3.4) we obtain

eag =
∑
l≥0

n−1∑
i=0

znl+icl
i,(i+a−1mod n)+1e(i+a−1mod n)+1.

Notice that for any b = 1, . . . , n we have

e(i+a−1mod n)+1eb = eb ⇐⇒ (i + a− 1 modn) + 1 = b ⇐⇒ i = b− a + sgn(a− b)n

while e(i+a−1mod n)+1eb = 0 for all other values of i ∈ {0, . . . , n− 1}. Thus

g(a)eb = eageb =
∑
l≥0

zn
(
l+sgn(a−b)

)
+b−acl

b−a+sgn(a−b)n,beb.

As a consequence,

deg(g(a)eb) =
(
max{l | cl

b−a+sgn(a−b)n,b 6= 0}+ sgn(a− b)
)
n + b− a = n deg(mab) + b− a,

where the last identity follows from (3.7). This shows deg(g(a)eb) = D(M)ab. The last
two statements of (2) are a direct consequence. For parts (3) and (4) let δa and ba be as
in (4). Then max{D(M)ab | 1 ≤ b ≤ n} = max{ndab− a + b | 1 ≤ b ≤ n} = nδa− a + ba =
D(M)a,ba . Now the rest of (4) is a consequence of Definition 3.9, whereas (3) follows
from (3.12) along with part (2) since a + deg g(a) − 1 modn = ba − 1. �

Let us consider some examples.

Example 3.11 Let α be a primitive element of F and put n = q − 1. Then xn − 1 =∏n−1
i=0 (x − αi). Consider the isomorphism φ : A′ −→ A, f 7−→ [f(1), f(α), . . . , f(αn−1)]

of A′ := F[x]/〈xn − 1〉 with A. Then the primitive idempotents of A′ are given by
ea := γa

∏
i6=a−1(x − αi) for a = 1, . . . , n and some constants γa ∈ F×. Choose now the

automorphism σ ∈ AutF(A′) defined via σ(x) = α−1x. Then one easily checks that (3.4)
is satisfied. This example has also been studied in [5, Prop. 4.2] (since in that paper the
automorphism is given by x 7→ αx one has to replace α by α−1 in the idempotents in order
to get back the ordering as in [5]). In [5, Prop. 4.2, Thm. 2.1] it has been shown that for
any 1 ≤ δ ≤ n− 1 the σ-cyclic submodule C = p−1(

•〈 g 〉), where g = e1
∑δ

i=0 zi, gives rise
to a 1-dimensional MDS convolutional code. Hence the distance of that code is n(δ + 1),
which is the maximum value among all 1-dimensional codes of length n and degree δ (for
MDS convolutional codes see [22]). Let us compute an encoder matrix G ∈ F[z]1×n of C.
From Theorem 3.5(4) we know that G = p−1(g) is such an encoder since g = g(1). The
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first primitive idempotent in A′ is given by e1 = 1
n

∑n−1
i=0 xi as one can easily verify via

the isomorphism φ. Thus,

g =
1
n

n−1∑
i=0

xi
δ∑

j=0

zj =
1
n

δ∑
j=0

zj
n−1∑
i=0

σj(xi) =
1
n

δ∑
j=0

zj
n−1∑
i=0

α−jixi.

Using the map p from (2.4) we obtain

G =
1
n

( δ∑
j=0

zj ,

δ∑
j=0

zjα−j , . . . ,

δ∑
j=0

zjα−(n−1)j
)

=
1
n

δ∑
j=0

zj(1, α−j , α−2j , . . . , α−(n−1)j).

In this specific example the matrix M := ξ(g) has a particularly simple form. Indeed,
since g = g(1) =

∑δ
i=0 zie1+i and δ ≤ n− 1 we obtain

δ+1︷ ︸︸ ︷
M := ξ(g) =

 1 1 ... 1 0 ... 0

0

 and D(M) =

 0 1 ... δ −∞ ... −∞

−∞
 .

The degree equation (3.18) is obvious. Notice that the matrix M is idempotent. Thus, g
is an idempotent generator of the left ideal

•〈 g 〉.

Example 3.12 Let q = 5 and n = 4. Consider the matrix

M =


2 + t 1 4 4

0 1 3 0
4t 2t 1 + t 1
0 0 0 0

 ∈M.

Obviously, M is delay-free. The corresponding polynomial g = ξ−1(M) ∈ A[z;σ] is given
by

g = 2e1 + e2 + e3 + z(e2 + 3e3 + e4) + z2(4e1 + 4e3) + z3(2e2 + 4e4) + z4(e1 + e3),

and its components are

g(1) = 2e1+ze2+4z2e3+4z3e4+z4e1, g(2) = e2+3ze3, g(3) = e3+ze4+4z2e1+2z3e2+z4e3.

The matrix, and thus g, are not semi-reduced as we can see directly from Proposi-
tion 3.10(4) or from the degree matrix

D(M) =


4 1 2 3
−∞ 0 1 −∞
2 3 4 1
−∞ −∞ −∞ −∞

 .
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Using two steps of elementary row operations one can bring M into semi-reduced form
without changing the left ideal

•〈M 〉. Indeed, one easily checks that
1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 3t 1 0
0 0 0 1




2 + t 1 4 4
0 1 3 0
4t 2t 1 + t 1
0 0 0 0

 =


2 1 0 0
0 1 3 0
4t 0 1 1
0 0 0 0

 =: M̄. (3.19)

Since the two leftmost matrices are in M×, see Proposition 3.3, we have
•〈M 〉 =

•〈 M̄ 〉.
Furthermore, M̄ is semi-reduced as one can easily see with the help of Proposition 3.10(4).
The corresponding polynomial ḡ := ξ−1(M̄) is given by ḡ = 2e1 + e2 + e3 + z(e2 + 3e3 +
e4) + z24e1, which is semi-reduced according to Proposition 3.10(3). We will come back
to this example later on in Example 4.4.

The procedure of semi-reducing matrices in M as in the previous example always works.
This is shown in the following result.

Theorem 3.13 A matrix in GLn(F[t]) is said to be an elementary unit of M if it is of
any of the following types:

(i)
∑

i6=a Eii + αEaa for some α ∈ F× and a = 1, . . . , n,

(ii) In + tNαEab for some N ≥ 0, α ∈ F and 1 ≤ a < b ≤ n,

(iii) In + tNαEab for some N > 0, α ∈ F and 1 ≤ b < a ≤ n.

Then each matrix in M can be brought into semi-reduced form via left multiplication
by finitely many elementary units of M. As a consequence, each unit M ∈ M× can be
written as a product of elementary units of M.

Proof: It is trivial that each of the matrices in (i) – (iii) is indeed in M×, and that the
inverse of such an elementary unit is an elementary unit of the same type.
Let now M = (mab) ∈ M and assume that M is not semi-reduced. Then, according
to Proposition 3.10 there exist indices (a, c) and (b, c) where b > a such that D(M)a,c

and D(M)b,c are the maxima in the a-th and b-th row of D(M), respectively. Using the
definition of the matrix D(M) one easily checks that for b > a and j = 1, . . . , n

D(M)bj < D(M)aj ⇐⇒ deg(mbj) ≤ deg(maj). (3.20)

We want to transform M into semi-reduced form via left multiplication by elementary units
ofM. Consider first the caseD(M)bc ≤ D(M)ac. Put M̂ = (m̂ij) = (In+tNαEab)M where
N := deg(mac)− deg(mbc) ≥ 0 and α ∈ F is such that deg(m̂ac) = deg(mac + tNαmbc) <
deg(mac). This is possible due to (3.20). Then D(M̂)ac < D(M)ac. Furthermore, for j 6= c
we have m̂aj = maj + tNαmbj and thus

D(M̂)aj = n deg(m̂aj)− a + j ≤ n max{deg(maj), N + deg(mbj)} − a + j

= max{n deg(maj)− a + j, nN + n deg(mbj)− a + j}
= max{D(M)aj ,D(M)bj + nN + b− a}
< max{D(M)ac,D(M)bc + nN + b− a},
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where the last inequality holds true due to the uniqueness of the row maxima in D(M)
(see Proposition 3.10(1)). Since

D(M)bc + nN + b− a = n deg(mbc)− b + c + nN + b− a = n deg(mac)− a + c = D(M)ac

the above results in D(M̂)aj < D(M)ac for all j = 1, . . . , n.
If D(M)bc > D(M)ac, then put M̂ := (In + tNαEba)M where N > 0 and α ∈ F are chosen
such that deg(mbc+tNαmac) < deg(mbc). Again, this is possible by virtue of (3.20). Argu-
ing the same way we obtain likewise D(M̂)bj < D(M)bc for all j = 1, . . . , n. Summarizing
we see that if M is not semi-reduced we may apply one of the two transformations given
above, and they both strictly decrease the maximum value in one of the rows of D(M)
while all other rows remain unchanged. Altogether this results in a reduction procedure
that must stop after finitely many steps with a semi-reduced matrix.
The last statement of the theorem follows directly from (3.13) together with the use of
elementary units of Type (i). �

One easily checks that the elementary units in Theorem 3.13 correspond to the units

ξ−1
(∑

i6=a

Eii + αEaa

)
= αea +

∑
i6=a

ei, ξ−1
(
In + tNαEab

)
= 1 + zNn+b−aαeb,

in A[z;σ]. Of course, in the second case we have a 6= b and N > 0 if b < a. These
units in A[z;σ] have been studied in detail in the paper [6]. In a more general context
it has been shown in [6, Lem. 3.7] that 1 + zdαeb, where d > 0, is a unit if and only if
n - d, and that each unit in A[z;σ] can be written as the product of finitely many units of
the types above. This corresponds exactly to our last statement in Theorem 3.13 above.
With that theorem we even see that left reduction to a semi-reduced polynomial in the
skew-polynomial ring A[z;σ], cf. [8, Cor. 4.13], simply means elementary row reduction of
the matrices in M.

The following result tells us as to when a matrix in M can be completed to a unit in M
by filling in suitable entries in the zero rows. This result will be important later on when
studying whether a cyclic submodule is a direct summand.

Lemma 3.14 Let M ∈M be delay-free and Supp (M) = {i1, . . . , ik}, where i1 < . . . < ik.
Denote the rows of M by M1, . . . ,Mn. Then the following are equivalent.

(a) The matrix M̃ :=

(Mi1

...
Mik

)
is basic.

(b) There exist vectors M̂i ∈ F[t]1×n for i ∈ {1, . . . , n}\{i1, . . . , ik} such that the matrix

N =

N1
...

Nn

 ∈ F[t]n×n, where Ni :=

{
Mi if i ∈ {i1, . . . , ik}
M̂i if i ∈ {1, . . . , n}\{i1, . . . , ik}

is in M×.

Since every matrix in M× is delay-free it is clear that the delay-freeness is necessary for
the implication (a) =⇒ (b) to be true.
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For the proof the following suggestive notation will be helpful. Arbitrary entries of a
matrix in F[t]r×n will be indicated by an asterisk ∗, whereas entries that are multiples of t
will be denoted by the symbol 〈t〉. Thus, the elements of M are just the matrices of the
form 

∗ ∗ ··· ∗
〈t〉 ∗ ∗
...

. . . . . .
...

〈t〉 ··· 〈t〉 ∗

 .

Proof: Only the implication “(a) ⇒ (b)” requires proof. It is a well-known fact that,
since the k-minors of M̃ are coprime, there exists a matrix M̂ ∈ F[t](n−k)×n such that
N :=

( fMcM
)
∈ GLn(F[t]). Therefore, N is of the form

〈t〉 ··· mi1i1
∗ ··· ∗

〈t〉 ··· ··· ··· mi2i2
∗ ··· ∗

...
...

〈t〉 ··· ··· ··· ··· ··· ··· mikik
∗ ··· ∗

cM

 ,

where all entries in the upper block and to the left of mij ,ij are of the type 〈t〉. We
will show now that with suitable row operations we can transform N into a matrix being
in M without altering the rows of the upper part M̃ . By delay-freeness of M we have
mijij (0) 6= 0 for all j = 1, . . . , k. Hence, by adding suitable multiples of rows of M̃ to M̂
we can transform N into a matrix of the form

〈t〉 ··· mi1i1
∗ ··· ∗

〈t〉 ··· ··· ··· mi2i2
∗ ··· ∗

...
...

〈t〉 ··· ··· ··· ··· ··· ··· mikik
∗ ··· ∗

〈t〉 〈t〉 〈t〉

∗
... ∗

... ∗
... ∗

〈t〉 〈t〉 〈t〉


∈ GLn(F[t]), (3.21)

where the upper part M̃ is unaltered. Therefore, we may assume without loss of generality
that N is as in (3.21). For the next step observe that for any column vector a ∈ F[t]l×1

there exists U ∈ GLl(F[t]) such that Ua is of the form
∗
〈t〉
...
〈t〉

 .

Thus, working consecutively from the left to the right and applying suitable elementary
row operations on the lower block of N we can bring M̂ into the form
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M̂ =



∗ 〈t〉 〈t〉

〈t〉 . . .
...

...
. . . ∗ 〈t〉

...

〈t〉 · · · 〈t〉 〈t〉 ∗ 〈t〉
...

...
... 〈t〉 . . .

...
...

...
...

. . . ∗ 〈t〉
...

...
...

... 〈t〉 〈t〉 . . .
...

...
...

...
...

...
. . .

〈t〉 · · · 〈t〉 〈t〉 〈t〉 〈t〉 〈t〉



 i1−1 rows

 i2−i1−1 rows

︸ ︷︷ ︸
i1 columns

︸ ︷︷ ︸
i2−i1 columns

while M̃ does not change. Assume that N =
( fMcM

)
is of this form and recall that the

j-th row of M̃ is given by Mij , j = 1, . . . , k. Now, moving for j = 1, . . . , k the j-th row
of M̃ to the bottom of the j-th block of M̂ we can form a matrix N ′ where the ij-th row
is given by Mij for j = 1, . . . , k and where we keep the ordering of all remaining rows
of N . This way, the entries in M̂ that are explicitly indicated by asterisks and the entries
mijij , j = 1, . . . , k, will appear on the diagonal of N ′, while all entries below the diagonal
will be in 〈t〉. Hence N ′ ∈ GLn(F[t]) ∩M and Proposition 3.3 completes the proof. �

Remark 3.15 Essentially all of the results of this section are true without the requirement
of n dividing q − 1. Indeed, just consider A and σ as in (3.1) and (3.3). Section 4 of [8]
remains true in this case since it was solely based on A being a direct product of fields. The
only part that needs extra proof is part (3) of Theorem 3.5, and that can be accomplished
using ring theoretic methods. Part (4) of that theorem does not have a meaning in this
more general setting since A is not isomorphic to F[x]/〈xn − 1〉 anymore, and thus the
map p does not exist. We will briefly come back to this situation in Section 6.

4 Construction and Existence of σ-CCC’s

In this section we will apply the results obtained so far in order to construct σ-CCC’s,
and we will discuss some existence issues. As before, let A and σ be as in (3.1) and (3.3)
and let n | (q − 1). Moreover, put

Mbasic :=
{

M ∈M
∣∣∣∣ M delay-free and

the nonzero rows of M form a basic matrix

}
. (4.1)

Let us summarize the previous results in the following form. We also think it is worthwhile
pointing out that the property of a module being a direct summand as an F[z]-submodule
is equivalent to being a direct summand as a left ideal in the skew polynomial ring. Recall
the map p from (2.4).
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Theorem 4.1 Let g ∈ A[z;σ] be delay-free and semi-reduced. Then the following are
equivalent.

(i)
•〈 g 〉 is a direct summand of the left F[z]-module A[z;σ] (thus, p−1(

•〈 g 〉) is a σ-CCC).

(ii)
•〈 g 〉 is a direct summand of the ring A[z;σ].

(iii) ξ(g) ∈Mbasic.

Proof: The equivalence of (i) and (ii) has been proved in [6, Rem. 2.10], whereas
(i) ⇐⇒ (iii) follows from Lemma 3.14, Theorem 3.5(3), and the fact that ξ is an iso-
morphism. �

Notice that (iii) gives us an easy way of checking whether a given left ideal is a direct
summand (thus a σ-CCC) since basicness of a matrix in F[t]k×n can, for instance, be
checked by testing whether its k-minors are coprime.

As a consequence, σ-CCC’s are in one-one correspondence with the left ideals
•〈M 〉 ⊆

M where M ∈ Mbasic is semi-reduced. Proposition 3.10(3) and Theorem 3.5(4), see
also Remark 3.6, tell us immediately the algebraic parameters of the code, that is, the
dimension, the Forney indices and degree. This is summarized in the next result.

Corollary 4.2 Let M ∈ Mbasic be semi-reduced and let Supp (M) = {i1, . . . , ik}, where
i1 < . . . < ik. Then C := p−1(

•〈 ξ−1(M) 〉) ⊆ F[z]n is a k-dimensional σ-CCC with Forney
indices given by νl := max1≤j≤nD(M)il,j for l = 1, . . . , k.

Example 4.3 Let us consider again the setting of Example 3.11 where n = q − 1 and
σ(x) = α−1x with some primitive element α of F. In that example we presented some 1-
dimensional σ-cyclic MDS convolutional codes. These codes can be generalized as follows.
Let g = (e1 + e2)(1 + z). Then

M = ξ(g) =

 1 1 0 0 ... 0
0 1 1 0 ... 0

0

 , D(M) =

 0 1 −∞ −∞ ... −∞
0 0 1 −∞ ... −∞

−∞
 .

Obviously, M ∈Mbasic and hence the previous corollary guarantees that C := p−1(
•〈 g 〉) ⊆

F[z]n is a σ-CCC. Furthermore, M , and thus g, is semi-reduced. As a consequence, the
code C is a 2-dimensional code in F[z]n with both Forney indices equal to 1 and degree 2.
In other words, C is a unit memory code. We will show now that these codes are optimal
in the sense that they have the largest distance among all 2-dimensional codes with Forney
indices 1, 1 and length n = q−1 over Fq. According to [9, Prop. 4.1] (see also [6, Eq. (1.3)])
the largest possible distance for codes with these parameters, called the Griesmer bound,
is given by the number 2(n− 1). In order to compute the actual distance of C we need an
encoder matrix. Since the support of g is Tg = {1, 2} and g(1) = e1 + ze2, g(2) = e2 + ze3,
Theorem 3.5(4) tells us that a minimal encoder is given by the matrix G = G0 + G1z
where

G0 =
(

p−1(e1)
p−1(e2)

)
, G1 =

(
p−1(e2)
p−1(e3)

)
∈ F2×n.

Furthermore, G is basic and minimal, and thus rankG0 = rank G1 = 2. Now it is easy
to see that the two block codes generated by G0 and G1, respectively, are MDS codes,
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that is, they both have distance n − 1. Indeed, recall from Example 3.11 that ea =
γa
∏

i6=a−1(x−αi) for a = 1, . . . , n. Thus, in the ring A′ = F[x]/〈xn − 1〉 the ideal 〈e1, e2〉
is identical to 〈f〉, where f =

∏n−1
i=2 (x − αi). As a consequence, the cyclic block code

im G0 = p−1(〈e1, e2〉) = p−1(〈f〉) ⊆ Fn has designed distance n−1. The second block code
〈e2, e3〉 is simply the image of the first one under the map σ. Since σ is weight-preserving
this shows that the second code has distance n − 1, too. But now it is clear that the
convolutional code C has distance 2(n− 1) since for each message u =

∑N
j=0 ujz

j ∈ F[z]2,
where u0 6= 0 6= uN , the corresponding codeword uG has constant term u0G0 and highest
coefficient uNG1, both of weight at least n− 1.
In the same way one can proceed and consider the unit memory code generated by the
polynomial g = (e1 + e2 + e3)(1 + z). Again, the matrix M := ξ(g) shows that g is
semi-reduced and basic and thus C = p−1(

•〈 g 〉) is a 3-dimensional σ-CCC with all Forney
indices being 1. In this case, [9, Prop. 4.1] tells us that, if n ≥ 6, the Griesmer bound for
these parameters is given by the number 2(n− 2) + 1. In the same way as above one can
show that the codes just constructed have distance 2(n−2), that is, they fail the Griesmer
bound by 1. Proceeding in the same way for arbitrary k ≤ n

2 , one obtains k-dimensional
unit memory σ-CCC’s having distance 2(n−k+1) which is k−2 below the corresponding
Griesmer bound.

Example 4.4 Let q = 5 and n = 4 and ḡ be as in Example 3.12. Write F = F5. One
easily checks that the matrix M̄ = ξ(ḡ) given in (3.19) is in Mbasic. Thus, the submodule
C = p−1(

•〈 ḡ 〉) ⊆ F[z]4 is a 3-dimensional σ-CCC with Forney indices 1, 1, 2. In order to
compute a minimal encoder G ∈ F[z]3×4 of C we will apply Theorem 3.5(4). From ḡ as
given in Example 3.12 we obtain the components ḡ(1) = 2e1 + ze2, ḡ(2) = e2 +3ze3, ḡ(3) =
e3 + ze4 + 4z2e1. Identifying f ∈ F[x]/〈x4 − 1〉 with [f(1), f(2), f(4), f(3)] ∈ A and using
the map p from (2.4) we arrive at the minimal encoder matrix

G =

p−1(ḡ(1))
p−1(ḡ(2))
p−1(ḡ(3))

 =

 4z + 3 2z + 3 z + 3 3z + 3
2z + 4 3z + 2 2z + 1 3z + 3

z2 + 4z + 4 z2 + 3z + 1 z2 + z + 4 z2 + 2z + 1

 .

Using some computer algebra routine one checks that this code attains the Griesmer bound
(see [6, Eq. (1.3)]). Precisely, its distance is 6, which is the largest distance possible for
any 3-dimensional code of length 4 over F5 with the same Forney indices.

Let us now turn to the existence of σ-CCC’s with prescribed algebraic parameters. Corol-
lary 4.2 raises the question whether for all 1 ≤ k ≤ n− 1 and ν1, . . . , νk ∈ N0 there exists
a k-dimensional σ-CCC in F[z]n with Forney indices ν1, . . . , νk. The rest of this section
will be devoted to this problem. We will start with showing that this problem can be split
into two subproblems one of which is purely combinatorial.

Put

D̂ :=


0 1 2 . . . n− 2 n− 1

n− 1 0 1 . . . n− 3 n− 2
...

...
...

. . .
...

...
2 3 4 . . . 0 1
1 2 3 . . . n− 1 0

 , (4.2)
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thus,

D̂ab =

{
b− a, if b ≥ a

n + b− a, if b < a.

}
= b− amodn. (4.3)

The role of the matrix D̂ is explained by the fact that for every matrix M = (mab) ∈ M
we have

D(M)ab =

{
n deg mab + D̂ab if b ≥ a,

n(deg mab − 1) + D̂ab if b < a.
(4.4)

The combinatorial problem we need to consider shows some close resemblance with the
classical rook problem.

Problem 4.5 (Modified Rook Problem) Let r1, . . . , rk be any (not necessarily differ-
ent) numbers in {0, . . . , n−1}. Can we find these numbers in the matrix D̂ such that they
appear in pairwise different rows and pairwise different columns? In other words, can we
find distinct numbers i1, . . . , ik and distinct numbers j1, . . . , jk, all in the set {1, . . . , n},
such that

D̂il,jl
= rl for l = 1, . . . , k. (4.5)

The following slight reformulation will come handy for our purposes.

Remark 4.6 If Problem 4.5 is solvable for r1, . . . , rk then we can find these numbers even
in the first n − 1 rows of the matrix D̂. In other words, (4.5) is true for some distinct
numbers i1, . . . , ik ∈ {1, . . . , n − 1} and distinct numbers j1, . . . , jk ∈ {1, . . . , n}. Indeed,
suppose we have a solution to 4.5, that is, D̂il,jl

= rl for l = 1, . . . , k. Then we may
construct a second solution as follows. There exists some α ∈ {1, . . . , n} such that il 6= α
for all l. Put al = (il − α − 1 modn) + 1 and bl = (jl − α − 1 modn) + 1. Since the
numbers (i1 modn), . . . , (ik modn) are pairwise different the same is true for a1, . . . , ak.
Likewise b1, . . . , bk are pairwise different. Of course, al, bl ∈ {1, . . . , n} for all l = 1, . . . , k.
Moreover, by construction al 6= n for all l = 1, . . . , k, and upon using (4.3) we obtain
D̂al,bl

= bl − al modn = jl − il modn = D̂il,jl
= rl for l = 1, . . . , k.

In the next section we will study Problem 4.5 in some more detail. Even though we
are not able to provide a proof of the solvability for general numbers r1, . . . , rk we will
consider some special cases where we present a complete proof. We would like to express
our strong belief that the problem can be solved for all given data r1, . . . , rn−1. This has
been underscored by a routine check with Maple confirming our conjecture for all n ≤ 10.

The second problem we need to consider has an affirmative answer and thus can be stated
as a theorem. The proof will be presented at the end of this section.

Theorem 4.7 Let j1, . . . , jn−1 ∈ {1, . . . , n} be pairwise different and d1, . . . , dn−1 ∈ N0

be such that
ji < i =⇒ di > 0. (4.6)

Then there exists a basic matrix M = (mij) ∈ F[t](n−1)×n with the following properties:

(i) deg mij ≤ di for j < ji,
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(ii) deg mij = di for j = ji,

(iii) deg mij < di for j > ji,

(iv) mii(0) = 1 for all i,

(v) mij(0) = 0 for j < i.

Notice that the properties (i) – (iii) simply tell us that the i-th row degree is given by di and
the rightmost entry with degree di is in column ji. Moreover, observe that without (4.6)
the requirements (ii) and (v) would not be compatible. Using Proposition 3.10 we see that
if we extend M by a zero row at the bottom we obtain a semi-reduced matrix in Mbasic.

Now we can show the following.

Theorem 4.8 Let 1 ≤ k ≤ n− 1 and ν1, . . . , νk ∈ N0. Put rl = νl modn for l = 1, . . . , k.
If Problem 4.5 is solvable for r1, . . . , rk then there exists a k-dimensional σ-CCC in F[z]n

with Forney indices ν1, . . . , νk.
As a consequence, if Problem 4.5 is solvable for all r1, . . . , rn−1 ∈ {0, . . . , n − 1} then for
all 1 ≤ k ≤ n− 1 and all ν1, . . . , νk ∈ N0 there exists a k-dimensional σ-CCC in F[z]n with
Forney indices ν1, . . . , νk.

Proof: Let k ∈ {1, . . . , n − 1} and ν1, . . . , νk ∈ N0. Write νl = d̂ln + rl, where d̂l ∈ N0

and 0 ≤ rl ≤ n − 1. By assumption and Remark 4.6 there exist distinct i1, . . . , ik ∈
{1, . . . , n − 1} and distinct j1, . . . , jk ∈ {1, . . . , n} such that D̂il,jl

= rl for l = 1, . . . , k.
Pick 1 ≤ ik+1, . . . , in−1 ≤ n − 1 and 1 ≤ jk+1, . . . , jn−1 ≤ n such that i1, . . . , in−1 as well
as j1, . . . , jn−1 are pairwise different. Define rl := D̂il,jl

for l = k + 1, . . . , n − 1 and put
d̂l := 0 and νl := rl for l = k + 1, . . . , n− 1. Now we re-index the numbers r1, . . . , rn−1 in
order to obtain

D̂l,jl
= rl for l = 1, . . . , n− 1. (4.7)

Define

dl :=
{

d̂l if jl ≥ l,

d̂l + 1 if jl < l.
(4.8)

Then (4.6) is true and Theorem 4.7 guarantees the existence of a matrix M̃ = (mij) ∈
F[t](n−1)×n satisfying (i) – (v). Extending M̃ by a zero row at the bottom results in a
semi-reduced matrix M ∈ Mbasic, see also Proposition 3.10(4). Using (4.4), we see that
the maxima in the first n− 1 rows of D(M) are given by

D(M)l,jl
=

{
ndl + D̂l,jl

= nd̂l + rl = νl, if jl ≥ l,

n(dl − 1) + D̂l,jl
= nd̂l + rl = νl, if jl < l.

Finally, deleting the rows of M corresponding to the n − 1 − k artificially added indices
νk+1, . . . , νn−1 (in the original ordering) we obtain a semi-reduced matrix N ∈ Mbasic,
and Corollary 4.2 shows that p−1(

•〈 ξ−1(N) 〉) is a k-dimensional code with Forney indices
ν1, . . . , νk. �

Example 4.9 Suppose we want a 3-dimensional σ-CCC C ⊆ F5[z]4 with Forney indices
4, 3, 3. Thus, q = 5 and n = 4. The remainders modulo n of the desired Forney indices
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are 0, 3, 3, and by inspection we find D̂1,4 = 3 =: r1, D̂2,1 = 3 =: r2, D̂3,3 = 0 =: r3.
Thus, (4.7) is true for (j1, j2, j3) = (4, 1, 3). This gives us the ordering ν1 = 3, ν2 = 3, ν3 =
4 of the Forney indices, and we have d̂1 = d̂2 = 0 and d̂3 = 1. Following (4.8) we put
d1 = 0, d2 = 1, d3 = 1. Then we have all data for Theorem 4.7. One easily sees that the
matrix

M =

1 0 0 1
t 1 0 0
0 0 1 + t 1


is basic and satisfies (i) – (v) of that theorem. Adding a zero row at the bottom gives us a
semi-reduced matrix N ∈Mbasic, and using Corollary 4.2 we see that C = p−1

(•〈 ξ−1(N) 〉
)

is a 3-dimensional σ-CCC in F5[z]4 with Forney indices 3, 3, 4. An encoder matrix of C
can be obtained as follows. The rows of M along with the isomorphism ξ result in the
component polynomials g(1) = e1 + z3e4, g(2) = e2 + z3e1, g(3) = e3 + ze4 + z4e3. Us-
ing the same identification of A with F5[z]/〈x4 − 1〉 as in Example 4.4 we obtain from
Theorem 3.5(4) that

G =

p−1(g(1))
p−1(g(2))
p−1(g(3))

 =

 4z3 + 4 3z3 + 4 z3 + 4 2z3 + 4
4z3 + 4 4z3 + 2 4z3 + 1 4z3 + 3

4z4 + 4z + 4 z4 + 3z + 1 4z4 + z + 4 z4 + 2z + 1


is a minimal encoder of C. It should be pointed out that the distance of this code is far
from being optimal. This is due to the abundance of zeros in the matrix M causing many
zero coefficients in the matrix G.

Let us briefly mention the following converse of Theorem 4.8. Indeed, it is easy to see that
the existence of (n − 1)-dimensional σ-CCC’s with arbitrarily prescribed Forney indices
implies the solvability of Problem 4.5 for any given numbers r1, . . . , rn−1 ∈ {0, . . . , n− 1}.
In more detail, the existence of such codes implies the existence of semi-reduced polyno-
mials g ∈ A[z;σ] with support satisfying |Tg| = n − 1 and arbitrarily given degrees of its
nonzero components. Using Proposition 3.10(3) this shows the solvability of Problem 4.5
for k = n− 1, and thus for arbitrary k ∈ {1, . . . , n− 1}.

While the general formulation of Theorem 4.8 is based on the assumption that we can
solve Problem 4.5 we have some specific cases with fully established existence results.

Theorem 4.10 Let 1 ≤ k ≤ n+1
2 . Then for all ν1, . . . , νk ∈ N0 there exists a k-

dimensional σ-CCC having Forney indices ν1, . . . , νk.

Proof: Using Theorem 4.8 it suffices to show that Problem 4.5 can be solved for any
given numbers r1, . . . , rk ∈ {0, . . . , n−1} if k ≤ n+1

2 . First of all, it is clear that there exists
j1 such that D̂1,j1 = r1, and we will proceed by induction. Thus, let us assume that we
found distinct indices i1, . . . , ik−1 and j1, . . . , jk−1 such that D̂il,jl

= rl for l = 1, . . . , k−1.
After a suitable permutation of the rows and columns of D̂ we obtain a matrix

D̃ =
(

D̃1 D̃2

D̃3 D̃4

)
where D̃1 = diag(r1, . . . , rk−1) ∈ Z(k−1)×(k−1)
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and where the other matrices are of fitting sizes. In particular, the matrix D̃3 is of size
(n−k+1)×(k−1). Since the entries of each row (resp. column) of D̃ are pairwise different
and, by assumption, n − k + 1 > k − 1 there exists at least one row of D̃3 that does not
contain the entry rk. But then rk must occur in the submatrix D̃4, and therefore we have
found r1, . . . , rk in the matrix D̂ in pairwise different columns and rows. �

One might wonder whether the last result can be extended to codes with arbitrary dimen-
sion by using dual codes. Recall that the dual C⊥ of a k-dimensional code C ⊆ F[z]n has
dimension n− k. However, it is a well-known fact in convolutional coding theory that the
Forney indices of the dual code are not determined by the Forney indices of the given code.
This is also true in the special case of σ-CCC’s as one can easily see by some examples. As
a consequence, Theorem 4.10 does not imply any existence results for codes with higher
dimension.

In the next section we will show that we can solve Problem 4.5 for parameters r1, . . . , rn−1

that attain at most two different values, see Proposition 5.2. Consequently, we have the
following result.

Theorem 4.11 Let 1 ≤ k ≤ n− 1 and ν1, . . . , νk ∈ N0. If |{ν1 modn, . . . , νk modn}| ≤ 2
then there exists a k-dimensional σ-CCC in F[z]n with Forney indices ν1, . . . , νk.

We will close this section with the

Proof of Theorem 4.7:

We assume that F is any finite field and n ≥ 2. The following notation will be helpful. For
a matrix A ∈ F[t]n×(n+1) and l = 1, . . . , n+1 let A(l) denote the n-minor of A obtained by
omitting column l. Recall that A is basic if and only if the polynomials A(1), . . . , A(n+1)

are coprime.

We will prove even more than stated in Theorem 4.7. We will show that for the given data
there exists a matrix M satisfying the requirements of the theorem and with the following
additional properties:
(vi) The only nonzero elements below the diagonal of M are at the positions (i, ji) where

ji < i and they are of the form tdi . This, of course, implies (v).
(vii) If ji < i, then the only nonconstant element in the i-th row is at position (i, ji).
Using (vi), part (vii) tells us that if ji < i then all elements at positions (i, j) where j ≥ i
are constant.
We will proceed by induction on n. Let n = 2 and j1, d1 be given. For j1 = 1 the matrices
M = (1 + td1 , 1), if d1 > 0, and M = (1, 0), if d1 = 0, are basic and have the properties (i)
– (vii). If j1 = 2, the matrix M = (1, td1) satisfies all requirements.
Let now n ≥ 2 and assume that for all possible j1, . . . , jn−1 and d1, . . . , dn−1 ∈ N0 a basic
matrix M ∈ F[t](n−1)×n satisfying (i) – (vii) exists. Throughout this proof we will call
such a matrix a solution for the parameters (j1, . . . , jn−1; d1, . . . , dn−1). Notice that due
to (iv) and (v) we have t - M (n).
Assume now we have pairwise different indices j1, . . . , jn ∈ {1, . . . , n + 1} and integers
d1, . . . , dn ∈ N0 such that (4.6) holds true. We will show the existence of a basic matrix
M ∈ F[t]n×(n+1) satisfying (i) – (vii) separately for each of the following cases.
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Case 1: jn = n + 1. Then j1, . . . , jn−1 ≤ n and by induction hypothesis there exists a
solution M̂ = (m̂1, . . . , m̂n) ∈ F[t](n−1)×n for the parameters (j1, . . . , jn−1; d1, . . . , dn−1).
Put

M =
(

m̂1 · · · m̂n−1 m̂n 0
0 · · · 0 1 tdn

)
∈ F[t]n×(n+1).

Since Mn,n = 1 and M̂ satisfies (i) – (vii) the same is true for M . Moreover, M is
basic as we can see by considering the n-minors. Indeed, we have M (i) = ±tdnM̂ (i) for
i = 1, . . . , n and M (n+1) = ±M̂ (n). Now the coprimeness of M (1), . . . ,M (n+1) follows from
the basicness of M̂ along with the fact that t - M̂ (n).
Case 2: jn = n and dn = 0. For i = 1, . . . , n− 1 put

ĵi =
{

ji if ji < n
n if ji = n + 1

(notice that the case ji = n+1 need not occur). Then the indices (ĵ1, . . . , ĵn−1; d1, . . . , dn−1)
satisfy (4.6) and thus there exists a solution M̂ = (m̂1, . . . , m̂n) ∈ F[t](n−1)×n for these
parameters. Put

M =
(

m̂1 · · · m̂n−1 0 m̂n

0 · · · 0 1 0

)
∈ F[t]n×(n+1).

It is easy to see that M is a solution for (j1, . . . , jn; d1, . . . , dn).
Case 3: jn = n and dn > 0. Choose M̂ as in the previous case and put

M =
(

m̂1 · · · m̂n−1 m̂n m̂n

0 · · · 0 1 + tdn 1

)
∈ F[t]n×(n+1).

In this case the n-minors of M are given by M (n+1) = ±(1+ tdn)M̂ (n) and M (n) = ±M̂ (n),
whereas for i = 1, . . . , n − 1 we have by expansion along the last row M (i) = ±

(
(1 +

tdn)M̂ (i) − M̂ (i)
)

= ±tdnM̂ (i). Again, basicness of M̂ along with the fact that t - M̂ (n)

implies basicness of M . It is easy to see that M satisfies the properties (i) – (vii).
Case 4: jn =: α < n. Then dn > 0. We have to distinguish further cases.

(a) If ji ≤ n for all i = 1, . . . , n− 1 let M̂ = (m̂1, . . . , m̂n) be a solution for the parameters
(j1, . . . , jn−1; d1, . . . , dn−1) and put

M =
(

m̂1 · · · m̂α · · · m̂n 0
tdn 1 1

)
∈ F[t]n×(n+1).

It is easy to see that M is basic and satisfies (i) – (vii).
(b) Suppose now there exists some index β such that jβ = n + 1 and assume that β ≤ α.
Then we may proceed as follows. For i = 1, . . . , n− 1 put

ĵi =
{

ji if i 6= β
α if i = β
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Then ĵ1, . . . , ĵn−1 are pairwise different and (ĵ1, . . . , ĵn−1; d1, . . . , dn−1) satisfy (4.6). Thus
by induction hypothesis there exists a solution M̂ = (m̂1, . . . , m̂n) ∈ F[t](n−1)×n for the
parameters (ĵ1, . . . , ĵn−1; d1, . . . , dn−1). Put

M =
(

m̂1 · · · m̂α · · · m̂n m̂α

tdn 1 0

)
∈ F[t]n×(n+1),

where for j ∈ {1, . . . , n − 1}\{α} a zero entry occurs at the position (n, j). This matrix
does not yet satisfy (i) –(vii), and we will take care of it later on. Let us first show
that M is basic. Computing the n-minors we obtain M (n+1) = ±tdnM̂ (α) ± M̂ (n) and
M (α) = ±M̂ (n) whereas for i 6∈ {α, n + 1} we have M (i) = ±tdnM̂ (i) (since the cofactor
of the entry 1 in the last row is zero). Hence again t - M̂ (n) together with the basicness
of M̂ implies the basicness of M . Let us now turn to the properties (i) – (vii). First
of all it is easy to see that M = (mij) satisfies (i), (ii), (iv), and (v). In particular,
in the row β, where jβ = n + 1, we have by construction deg mβ,n+1 = dβ as well as
deg mβ,j ≤ dβ for j < n + 1. Furthermore, properties (vi) and (vii) are satisfied since
they are true for M̂ along with the facts that β ≤ α and jβ = n + 1 > β. Thus, let
us turn to (iii). By construction property (iii) is satisfied for those indices i for which
ji < α. The only obstacle occurs when ji > α. In this case we also have deg mij < di for
ji < j < n + 1, but the entry in the last column does not necessarily satisfy this degree
constraint. Due to property (iii) for M̂ we have instead deg mi,n+1 ≤ di if ji ≥ α. We will
now perform elementary column operations in order to meet this final degree constraint.
These column operations will only change the last column of M and do not destroy any
of the properties mentioned above. For l = α + 1, . . . , n we consecutively perform the
following steps. If there exists an index i0 such that ji0 = l and deg mi0,n+1 = di0 then
we add a suitable constant multiple of the l-th column of M to the last column such that
the resulting entry at position (i0, n + 1) has degree strictly less than di0 . This is possible
since deg mi0,ji0

= di0 . Now the resulting matrix satisfies (iii) for all indices i such that
ji ≤ l. Moreover, all other degree constraints remain valid. In particular, in the row β for
which jβ = n + 1 we still have deg mβ,n+1 = dβ. This way we finally obtain a solution for
the parameters (j1, . . . , jn; d1, . . . , dn).
(c) It remains to consider the case where there exists some index β > α such that jβ = n+1.
Notice that β < n. For i = 1, . . . , n− 1 put

(ĵi, d̂i) =
{

(ji, di) if i 6= β
(α, dn + dβ) if i = β

Then ĵ1, . . . , ĵn−1 are pairwise different and (ĵ1, . . . , ĵn−1; d̂1, . . . , d̂n−1) satisfies (4.6) since
d̂β = dn + dβ ≥ dn > 0. Thus, by induction hypothesis there is a solution M̂ =
(m̂1, . . . , m̂n) ∈ F[t](n−1)×n for the parameters (ĵ1, . . . , ĵn−1; d̂1, . . . , d̂n−1). Put

M =
(

m̂1 · · · m̂α · · · m̂n 0
tdn 1 1

)
∈ F[t]n×(n+1),

where for i ∈ {1, . . . , n− 1}\{α} a zero entry occurs at the position (n, i). The n-minors
of M are given by M (n+1) = ±M̂ (n) ± tdnM̂ (α) and M (n) = ±M̂ (n), whereas for i < n
we have M (i) = ±M̂ (i). Thus M is basic. Furthermore, properties (i) – (vii) are satisfied
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for all rows with index i 6= β, and only the β-th row needs to be adjusted. Since M̂
satisfies (iv), (vi), and (vii) the β-th row and the n-th row of M are given by

(0, . . . , 0, tdn+dβ , 0, . . . , 0, fβ, fβ+1, . . . , fn, 0), for some fl ∈ F,

(0, . . . , 0, tdn , 0, . . . , 0, 0 , 0 , . . . , 1 , 1),

respectively, where the entries tdn+dβ and tdn appear in the α-th position, and the entry fβ

is in the β-th position. Moreover, fβ = 1 by (iv). Now we see that we may subtract tdβ

times the n-th row of M from the β-th row in order to obtain a new matrix M ′ where the
β-th row is of the form

(0, . . . . . . . . . , 0, fβ , fβ+1, . . . , fn − tdβ ,−tdβ ),

where still the entry fβ is in the β-th position. Since jβ = n + 1 now properties (i) –(vii)
are satisfied for i = β, whereas the other rows did not change. This finally shows that M ′

satisfies all requirements (i) – (vii). �

5 The Modified Rook Problem

In this short section we will briefly discuss Problem 4.5 for k := n−1 given numbers. First
of all, notice that the matrix D̂ in (4.2) is the addition table of the group Zn := Z/nZ if
the elements are ordered suitably. This has actually been used implicitly in Remark 4.6.
The additive group Zn allows us to reformulate the problem. In order to do so let

P := {(x1, . . . , xn−1) ∈ Zn−1
n | x1, . . . , xn−1 are pairwise different}

and
S := {r ∈ Zn−1

n | ∃ x, y ∈ P : r = x + y}.

As a consequence, Problem 4.5 is solvable for all r ∈ Zn−1
n if and only if S = Zn−1

n . Here
are some simple properties of the set S.

Proposition 5.1
(i) γ1 ∈ S for all γ ∈ Zn.

(ii) If r ∈ S, then τ(r) ∈ S for all permutations τ in the symmetric group Sn−1.

(iii) If r ∈ S, then γr ∈ S for all γ ∈ Z×n .

(iv) If r ∈ S, then r + γ1 ∈ S for all γ ∈ Zn.

(v) P ⊆ S.

Proof: Properties (i), (ii) and (iii) are obvious, whereas (iv) follows from the fact that
if x ∈ P then x + γ1 ∈ P for all γ ∈ Zn. Let us now turn to (v). If r ∈ P, then the
entries of r attain n − 1 of the n different elements in Zn. Using (ii) we may assume
that r = (0, 1, . . . , α − 1, α + 1, . . . , n − 1) for some α ∈ Zn. Again by (ii) we have
r ∈ S ⇐⇒ r′ := (α + 1. . . . , n − 1, 0, 1, . . . , α − 1) ∈ S. By (iv) this in turn is equivalent
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to s := r′ − α1 = (1, 2, . . . , n− 1) ∈ S. Hence it suffices to show that s ∈ S. For n being
odd one has s + x = y where

x = (2, 3 . . . , n−1
2 , n+1

2 , n+3
2 , . . . , n− 1, 0), y = (3, 5, . . . , n− 2, 0, 2, . . . , n− 3, n− 1).

Since n is odd x, y are in P which shows that s ∈ S. For n even one has s + x = y where

x = ( n
2 , n

2 + 1, . . . , n− 2, n− 1, 1, . . . , n
2 − 2, n

2 − 1 ),
y = (n

2 + 1, n
2 + 3, . . . , n

2 + n− 3, n
2 + n− 1, n

2 + 2, . . . , n
2 + n− 4, n

2 + n− 2)

Again, x, y ∈ P, showing the desired result. �

Proposition 5.2 If r = (r1, . . . , rn−1) ∈ Zn−1
n has at most two different entries, that is,

|{r1, . . . , rn−1}| ≤ 2, then r ∈ S.

Proof: If r1 = . . . = rn−1, then the assertion is in Proposition 5.1(i). Otherwise, using
Proposition 5.1(ii) we may assume r = (α, . . . , α, β, . . . , β) for some α 6= β. Using part(iv)
of that proposition we may even assume that α = 0. Thus, let

r = (0, . . . , 0︸ ︷︷ ︸
n−1−f

, β, . . . , β︸ ︷︷ ︸
f

) for some 1 ≤ f ≤ n− 2.

In order to prove r ∈ S let l be the additive order of β in Zn and put

t := (t1, . . . , tn) := (0, β, . . . , (l−1)β, 1, 1+β, . . . , 1+(l−1)β, . . . , β−1, 2β−1, . . . , lβ−1).

That is, the entries of t are sorted according to the group 〈β〉 and its cosets. Now put

x = ( t1, . . . , tn−f−1, tn−f+1 , . . . , tn ),
y = (−t1, . . . ,−tn−f−1, β − tn−f+1, . . . , β − tn).

Then r = x+ y and, obviously, x ∈ P. In order to see that y ∈ P notice first that the first
n − f − 1 entries are obviously pairwise different, and so are the last f entries. Assume
now β− tj = −ti for some n− f +1 ≤ j ≤ n and 1 ≤ i ≤ n− f − 1. Then tj = β + ti. But
by construction β + ti = ti+1 if i 6∈ lZ and β + ti = t(m−1)l+1 if i = ml. Since j > n−f > i
this shows that β + ti 6= tj . Hence y ∈ P and thus r ∈ S. �

Notice that the vector t above could also be defined according to a different ordering of
the cosets of 〈β〉. This shows, that there are many ways of writing r = x + y for some
x, y ∈ P.

Unfortunately, we are not aware of any way to generalize the last proof to vectors r ∈ Zn−1
n

with 3 or more different entries.

6 Extension to General Automorphisms — An Example

So far we have studied σ-CCC’s in F[z]n where n | (q− 1) and where the automorphism σ
induces a cycle of length n on the primitive idempotents of A. In this section we will
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briefly illustrate how the results can be utilized for general automorphisms if n | (q − 1).
For ease of notation let us restrict to the following example.

Let q = 8 and n = 7. Consider the automorphism σ ∈ AutF(A) defined by

σ(e1) = e2, σ(e2) = e3, σ(e3) = e1, σ(e4) = e5, σ(e5) = e6, σ(e6) = e7, σ(e7) = e4.

In cycle notation this reads as (e1, e2, e3)(e4, e5, e6, e7). Define A1 := F × F × F and
A2 := F × F × F × F and denote the primitive idempotents of A1 (resp. A2) simply by
e1, e2, e3 (resp. e4, e5, e6, e7). Then it is straightforward to establish the isomorphism

A[z;σ] 7−→ A1[z;σ1]×A2[z;σ2], g −→
(
g(1) + g(2) + g(3), g(4) + g(5) + g(6) + g(7)

)
, (6.1)

where for i = 1, 2 the automorphism σi on Ai is defined by the cycle (e1, e2, e3) and
(e4, e5, e6, e7), respectively. Furthermore, a polynomial in A[z;σ] is (semi-)reduced if and
only if each factor in Ai[z;σi] is (semi-)reduced. As a consequence, the investigation of left
ideals and direct summands in A[z;σ] amounts to the study of the same type of objects
in the rings Ai[z;σi]. Since for these rings the automorphism induces a cycle of maximal
length on the primitive idempotents this brings us to the situation of the previous sections.
Notice, however, that for the ring A1[z;σ1] the length n1 := 3 is not a divisor of q−1, and
thus, A1 6∼= F[x]/〈x3 − 1〉. In Remark 3.15 we mentioned that one can prove the results
of Section 3 in this case as well with the only exception of Theorem 3.5(4) which does
not make sense anymore. Along with the isomorphism (6.1) this is sufficient in order to
construct CCC’s for this automorphism as well. Let us illustrate this idea by an example.

Example 6.1 Let α ∈ F8 be the primitive element satisfying the identity α3 +α +1 = 0.
For i = 1, 2 let ξi : Ai[z;σi] −→Mi be the isomorphism with the according matrix ring
as introduced in Proposition 3.2. The matrices

M1 =

0 0 0
0 1 α4

0 0 0

 ∈M1 and M2 =


α6 1 α 0
0 0 0 0
0 0 α3 1
0 0 0 0

 ∈M2

are obviously basic and semi-reduced, and thus so are the polynomials g1 = ξ−1
1 (M1) =

e2 + zα4e3 ∈ A1[z;σ1] and g2 = ξ−1
2 (M2) = α6e4 + α3e6 + z(e5 + e7) + z2αe6 ∈ A2[z;σ2].

Using the isomorphism in (6.1) we obtain the semi-reduced and basic polynomial g =
g1 + g2 = e2 + α6e4 + α3e6 + z(α4e3 + e5 + e7) + z2αe6 ∈ A[z;σ]. Its support is given
by Tg = {2, 4, 6}. As a consequence,

•〈 g 〉 is a direct summand of rank 3 of the left F[z]-
module A[z;σ]. Now [8, Thm. 7.13(b)] (which is also valid for semi-reduced polynomials)
tells us that the matrix

G :=

p−1(g(2))
p−1(g(4))
p−1(g(6))

 ∈ F[z]3×7

is a minimal encoder for the σ-CCC C := p−1(
•〈 g 〉) ⊆ F[z]7. By construction, the code

has Forney indices 1, 2, 1. Of course, basicness and minimality of the matrix G can also
be checked directly once the rows of the matrix have been computed using the mapping p

from (2.4). Using a computer algebra routine one finds that the distance of C is 12. In
other words, the code attains the Griesmer bound, see [6, Eq. (1.3)].
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Concluding Remarks

In this paper we studied a particular class of CCC’s. We showed that the existence
of such codes with any given algebraic parameters can be reduced to solving a certain
combinatorial problem. Under the assumption this problem is solvable for all possible
instances this shows that the class of σ-CCC’s is, in a certain sense, as rich as the class of all
CC’s. We strongly believe that the combinatorial problem is solvable for all instances, but
that has to remain open for future research. Moreover, the potential of our approach needs
to be further exploited with respect to error-correcting properties. With the exception of
the codes in Example 4.3 the considerations so far do not result in classes of codes having
provably large distance.
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[1] J. A. Domı́nguez Pérez, J. M. Muñoz Porras, and G. Serrano Sotelo. Convolutional
codes of Goppa type. Appl. Algebra Engrg. Comm. and Comput., 15:51–61, 2004.
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