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Abstract. In this paper we consider in a behavioral setting the subclass of dis- 
crete-time, linear, finite-dimensional systems, which can be represented by auto- 
regressive (AR) equations. It will be shown that, with respect to the convergence 
of all coefficients in an AR representation, there exist continuously dependent 
input-state-output (i/s/o) representations, under the condition that some speci- 
fied degree remains constant. This continuous i/s/o representation is given by the 
Fuhrmann realization. 
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I. Introduction 

In many areas of control theory the question of continuity plays an important 
role, e.g. in the issue of structural stability or in robust control. For the formu- 
lation of continuity results there were introduced various kinds of topologies, 
metrics, or notions of convergence on the spaces of systems under consideration. 
One natural choice for the notion of continuity is the convergence of the corre- 
sponding system's parameters. But such a formulation is possible only if there are 
no structural changes within the class of systems under consideration, e.g. if the 
state-space dimension remains fixed. If one is interested in larger class of systems, 
it is more adequate to consider the systems as input-output operators between 
appropriate function spaces and to topologize accordingly in an operator theoret- 
ical way, as is done for, e.g. the gap topology. 

In this paper we want to study continuity properties for a special class of sys- 
tems within the first approach, namely continuity of realizations with respect to 
the parameters of the system. The systems under consideration will be linear, 
time-invariant, discrete-time autoregressive (AR) systems over the time-axis E 
in the behavioral setting; see [W2]. We will investigate the question, under 
which conditions have a convergent sequence of AR-systems given by matrices 
R l ~ ~[s] p• I e N := N u {~}, a converging sequence of input-state-output 
(i/s/o) representations (A ~, B s, C ~, Dr). The underlying notion of continuity is the 
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convergence of all coefficients in the matrices. The precise formulation of all these 
objects will be given below; see e.g. Definition 1.2. 

For a special case this question is already answered. Precisely, if the matrices 
R ~ e gO[s] p• have full row rank for all s e C, they can be viewed (up to permuta- 
tion of the columns) as coprime factorizations R ~ = [pt, Qt] of proper rational 
transfer matrices (Qt)-IPt. From realization theory it is known that there exists a 
natural homeomorphism between the space of all proper transfer matrices of 
McMillan degree r and the quotient space of minimal state-space systems of 
dimension r under similarity; see [MH], [BD], and [HI. This result also includes 
the existence of minimal state-space realizations, which are continuous with respect 
to the Euclidian topology, hence with respect to parameter convergence. In this 
situation, the space of transfer matrices is topologized as a space of maps from 
the Riemann sphere to a Grassmannian. But it is possible to show the coincidence 
of this topology on the space of proper transfer matrices of degree r with the 
topology of convergence of all coefficients in a suitable coprime polynomial factori- 
zation [G]. In this sense, the present paper generalizes the above mentioned ques- 
tion of continuous realizations to the behavioral and nonminimal setting. 

On the other hand, it can also be proven the coincidence of the topology on 
the space of transfer matrices with the gap or graph topology as defined in 
[ZE] and [VSF] as well as with the pointwise-gap metric introduced in [QD]; see 
[-DGS] and [G]. This is due to the fact that the fixed McMillan degree prevents 
pole-zero cancellations. These last mentioned topologies were introduced in the 
theory of robust control as topologies for input-output  operators. They are, of 
course, applicable to much larger spaces of transfer functions. But, as indicated 
above, in the very special case of fixed McMillan degree all these natural notions 
of convergence of systems coincide. 

In the behavioral setting a re - -up  to now-- two results concerning continuity 
of systems. In order to represent these results we need some notions, which are 
also basic to the present paper. Thus we will firstly introduce these concepts in 
detail before coming back to the issue of continuity. 

The systems under consideration are discrete-time, time-invariant and linear. 
They are given by triples (77, ~q, ~), where 7/is the time-axis, ~q the signal space 
and N c (Nq)~ := l_q the behavior, which is assumed to be linear and also shift- 
invariant, i.e. a (N)=  N with the backward-shift aw(k)= w(k + 1) for w s D_ q. 
Hence M is just a set of trajectories. For a detailed introduction in these type of 
systems see e.g. [W2]. A subclass of such systems are the autoregressive systems 
(AR systems) Z = (Z, Nq, N), where ~ is given as 

= ker R(a) = {w e D_qlR(a)w = O} (1.1) 

with a suitable matrix R e gO[s, s-l] p• It is shown in [W2, Prop. 4.1 A] that 
a system has an AR representation as in (1.1) iff ~ is a closed subspace in ~_q, 
equipped with the topology of pointwise convergence. If such an AR-representa- 
tion ~ = ker R(a) exists, one can assume rk R = p, so that, moreover, the repre- 
sentation becomes unique up to left unimodular factors in Glp(gC[s, s-l]); see 
[W3, Prop. III.3]. Since a: Q_q ~ D_ q is an automorphism, an AR-representation R 



84 H. Gl(ising-Liierl3en 

can always be chosen in •[s] p• but for the uniqueness one needs in fact the 
unimodular factors over It[s, s-l] .  

The representation of systems in the above sense goes one step further. It is 
shown in [W2, Thin. 4.3] that for an AR system ker R(a) with R ~ ~[s, s - l ]  T M  

the external variable w (see (1.1)) can be partitioned into m = q - p input vari- 
ables u and p output variables y, i.e. w = z(u t, yt)t with a permutation ~, so that 
there exists r ~ N and matrices (A, B, C, D) ~ Z(r, m, p) := ~r2+rm+p,+pm such that 

ker R(a) = {z(u t, yt)t ~ l_q[3x ~ l_r: ax = Ax  + Bu, y = Cx + Du}. (1.2) 

Hence the given behavior ker R(a) is--up to the permutation z--just  the so-called 
external behavior of an input-state-output system (i/s/o system). Note that the 
permutation z just extracts a full size minor of R with maximal degree, i.e. 
Rz = I-P, Q] with Q-1p proper. On the other hand, it can easily be seen that for 
(A, B, C, D) E Z(r, m, p) the external behavior 

~(A, B, C, D) := {(u t, yt)t ~ ilm+Pl3x ~ lit: (7X = Ax + Bu, y = Cx + Du} (1.3) 

is a closed subspace of 1_ m+p [W2, Prop. 4.1.C] and that every AR representation 
ker[e(a), Q(a)] = ~(A, B, C, D) fulfills det Q r 0 and Q-1p ~ ~(s)p• being 
proper [W3, Prop. X.3], [W2, Prop. 4.6]. It should be mentioned that even in 
the case R = [P, Q] with Q-IP being proper, deg det Q is in general not the 
McMillan degree of the system associated with ker[P(a), Q(o')]; see I-W3, p. 276] 
and Remark 2.6 of this paper. 

For i/s/o representations of behaviors a minimality criterion holds, similar to 
that of classical realization theory for transfer functions. In the special case con- 
sidered the following is valid. 

Remark 1.1. (a) (A, B, C, D) is a minimal i/s/o representation of ker R(a) with 
respect to the state-space dimension iff (A, C) is observable in the usual sense and 
[A, B] has full row rank [W2, Thin. 4.2]. 

(b) As in the case of transfer functions, a minimal i/s/o representation is unique 
up to similarity transformation [W3, Prop. IX.8]. 

In order to formulate the continuity results for autoregressive systems, we have 
to make precise the notion of convergence of all coefficients in a polynomial 
matrix. 

Definition 1.2. Let ~ := N u {oo}. For I ~ ~ let Rl = ~i=o~N' Rts i i  ~ lois] p• Define 
R ~ ~ R ~ for 1 ~ oo if there exists N ~ N such that Nt -< N for all l E ~ and RI ~ R~ 
for all i = 0 . . . . .  N in the Euclidian topology of tOP • q (where we put R[ = 0 for 
N~ < i <_ N). 

This notion of convergence was introduced in [NW]. Furthermore, using the 
usual concept of convergence of closed linear subsets ~ of the topological space 
l_q, it was proven in [NW] that: (a) convergence of full rank polynomial matrices 
in the sense of Definition 1.2 implies convergence of the associated behaviors; (b) 
convergence of closed behaviors in 1_ q with bounded total lag implies the existence 
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of converging AR-matrix representations [NW, p. 1521. Moreover, in IN, p. 26] 
it is shown that the convergence of matrices (A, B, C, D) of an i/s/o system as 
in (1.3) implies the convergence of the associated external behaviors if the limit 
system is observable. 

In this paper we will consider the other direction, namely the problem of exis- 
tence of continuous i/s/o representations for AR systems: given RZ~ ~[s]  p• for 
l ~ ~ with R ~ ~ R ~ in the sense of Definition 1.2, does there exist a permutation 
of the external variables and matrices (A ~, B ~, C ~, D ~) in some E (r, m, p) so that 
ker(R~z)(a) = ~ ( A  t, B t, C l, D t) and (A t, B ~, C z, D t) ~ (A ~, B ~, C ~, DO~ By the 
above, the existence of i/s/o representations implies at once that Rlz = [pl, QZ] 
with det Ql ~ 0 and (Qt) - IU ~ E(s) p• proper for l ~ ~.  It will be shown that 
in this situation there exists a continuous i/s/o representation (A t, B t, C l, D t) iff 
deg det QI = deg det QO~ for almost all l ~ ~.  Moreover, if this is the case, the rep- 
resentation can always be chosen as observable. It is given by the Fuhrmann 
realization. 

In the case of continuous-time autoregressive systems, another procedure for 
continuous realizations was given in [RR1] and [RR2]. Firstly, in [RR1] a smooth 
compactification of all autoregressive systems of degree r is presented. After this, 
in [RR2] a homeomorphism between this compact space and an orbit space of 
degree one realizations is constructed. In Remark 3.5(d) we will sketch, how the 
continuous i/s/o representation constructed in this paper also works in the 
continuous-time case and leads in the special case under consideration to an 
explicit version of the homeomorphism of [RR2]. 

2. I/s[o Representations for AR Systems 

We start with the construction of an i/s/o representation for ker R(a), where 
R = [P, Q] ~ R[s] p• This is only a slight modification of the representation 
given in I-W1, p. 577]. The construction is mainly a reorganization of all the 
finitely many data involved in the polynomial matrix R in order to get a repre- 
sentation of ker R(a) as a singular system, which, in some cases, gives an i/s/o 
representation. Let Q E ~[s] p• P ~ R[s] p• be given by 

hi-1 
Q(s) = diag(s "~, . . . .  s"P)0 + (q0),,j=l ..... p with qij = Y', q ksk 

k = 0  

and Q ~ ~p • q, 

(2.1) 

and /3 e ~P • =. 
ni-i 

P(s) = diag(s"~,.. . ,s"p)P + (P,j)i=l ..... p with Pij = ~ P ksk 
] = 1  . . . . .  m k = O  

(2.2) 
A 

Denote by h[-P, Q] the highest coefficient matrix of [P, Q]. Then [P, Q] = 
hi-P, Q] iff nl . . . . .  np are the row degrees of [P, Q]. For the following construc- 
tion it is also allowed that n i is larger than the ith row degree of [P, Q]. Hence 
there might be zero rows in the matrix [/3, ~], or, in an extreme case, [P, Q] = 0. 
Suppose ni > 0 for all i. Furthermore, suppose that there exists D E RP • = such that 
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/3 = (~D. This is for instance the case, if [P, Q] is row-proper (i.e. rk h [P, Q] = p) 
with row degrees na . . . .  , np, and Q-~P is proper, but also, if [/3, (~] = 0. 

P n = Put r := ~i=1 i, (~ = (Ou),/3 (.bij) and define 

~ "'" 1 e ~n'• 

E=(Eij) i , j= 1 ..... p e~r• with Ei j= I !  "" 0 _ _ : ! i j ] .  

" ' "  0 e ~ n i  • nj 

" ' "  0 

A = (Aij)i,j= ~ ..... pe  Nr• with Aij = 

I~ 
1 q~,-1J 

li o 1 
n , - i  

�9 " 0 qu J 

fo r i  = j, 

for i # j, 

Further  let 

~ • m with B i k = (bij)k=O ...... ,-1, where 
j = l , . . . , r a  

(2.3) 

~,,  • for i = j, 

for i # j .  

(2.4) 

P 
bi k pk 2 k  = -- qildtj, 

/=1 

(2.5) 

C = [ -C  1 . . . . .  Up] e ~p• with C~ = [0 . . . . .  0, ei] ~ NP• (2.6) 

where e~ denotes the ith standard basis vector in NP. 

Proposi t ion 2.1. With the above notations it holds that 

ker[P(a),  Q(tr)] = {(u t, yt)t ~ []_m+pl3 x ~ [l_r: Etrx = A x  + Bu, y = Cx - Du}. 

In particular, i f  Q e Glp(R), then E e Glr(N) and ker[e(a) ,  Q(a)] = ~(E- IA ,  E-1B, 
C, - D ) .  In this case, the i/s/o representation is always observable and it is minimal 
iff additionality rk[P(0), Q(0)] = p holds. 

Note that  in the case Q-1p  proper and rk h [P, Q] = p, this representation is sim- 
ilar to that given in [Wl ,  p. 577], which has the form (AE -1, B, Q-1C, - D ) .  

Proof. ( _ )  Let (u t, yt)t e U "+v with P(a)u + Q(tr)y = 0. Put  x = (xll  . . . . .  xa,1, 
. . . .  xvl . . . . .  Xp,p) t with X~n, = Yi + 2r~=ldlkUk for i =  1, . . . ,  p and ~Tkxik = 
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k-i  V P  l l V k - 1  Vm b~trluj for i = 1, , and k = 1, . . . ,  n i 1. Then l=O / 4=1 q i i  f f  Xjnj  ''1- Z . ~ / = O / ~ 1 = 1  ' ' '  P - -  

it holds by construction y = Cx - Du and one also checks Etrx = A x  + Bu. 
(~_) From the system equation it follows by induction trkX~k = 

k - t  p 1 o.l k - I  m 1171/,/ �9 __ El=0~ l= lqq r 'X ln j+~ t=0~ /= lb i /  j for t -  1, . . . ,  p and k -  1, . . . ,  n i - 1 .  
p ^ __ p n i - 1  m h i - 1  Moreover - ~ j = t  qotrXjnj - xi,n,-t + ~ j=l  q~y xjn j + ~'4=t bij uj. This and the 

output equations yj = Xjn~ - ~"~=t djkUk for j ---- 1 . . . .  , p yield by straightforward 
calculation P(a)u + Q(a)y = O. 

If Q m Glp(~), then rk[(sE - A) t, Ct] t = r for all s ~ C, which can be seen easily 
from the matrices. Moreover, it is rk[E-tA, E - t B ]  = r iff rk[Q(0), P(0) - Q(0)D] 
= p and this is equivalent to rk[P(0), Q(0)] = p. With Remark 1.1 this yields the 
desired result. �9 

Remark 2.2. (a) Note that this representation holds also in the case where the 
ni are not the row degrees of [P, Q]. We need only the assumption Im t3 __c_ Im (~, 
which is, e.g. trivially fulfilled, if both matrices are zero. In this case the 
above given representation is highly non-minimal and, of course, not an i/s/o 
representation. 

(b) It is worth noting that the construction in Proposition 2.1 leads also to 
an i/s/o representation in the case that h [P, (2] = [0, 1] and some (but not all!) 
of the ni's are zero. In this case one has to omit just those blocks, whose size 
involves n~. This holds true, since in the case h [P, (2] = [0, I] the equality n~ = 0 
leads to an equation yz = 0 in P(~r)u + (2(cr)y = 0 as well as in y = Cx. 

As a consequence from this special representation one gets the following. 

Corollary 2.3. Let  R = [P, Q] e ~ [ S ]  p x ( m + p )  with Q-Xp ~ R(s)P• proper and let 
(A, B, C, D) ~ E(r, m, p) be an arbitrary i/s/o representation of  ker R(a). Then 
ZA(s) := det(sl - A) = v(s) det (2(s) for some v ~ ~[s, s- l] .  I f  rk R(O) = p, then 
v 6 ~[s].  I f  (A, B, C, D) is a minimal representation of  ker R(a), then v(s) = as k for 
some ~ ~ ~\{0} and k ~ 77. I f  additionally rk R(O) = p, then k = O. 

Proof. We start with an arbitrary i/s/o representation (A, B, C, D) of ker R(a). 
1. If (A, C) is not observable, then there exists T e Glr(~) such that 

(TAT -~, TB, CT-~,D)=([A~ 3 AO4],FB~,[C~,O],D)LBzj 
with (A1, C1) e ~tz+pt for some t e N being observable. One checks ~(A, B, C, D) = 
~(A1, B1, C1, D) and we have Xa = ZalXA4" 

2. Let A t s R TM. If rk[A1, Bt] < t, then in particular the system (At, Bt, C1, D) 
is not reachable and hence there exists S ~ Gl~(N) such that 

with det A~ = 0 and (A'~, B[) reachable. We can assume 
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with J in nilpotent Jordan-form. Since it follows from the system equation 
ax = Jx, that x = 0, we can omit the nilpotent part of the system and thus we get 
N(A1, B1, Ca, D) = ~ ( A , B , C ,  D) with appropriate matrices A, B, C, which is still 
observable and where [A, B] has full row rank. The construction yields ;tA, = ZaZ~. 

Both parts together lead to ;gA = VZ~ with some v �9 R[s] where (A, B, C, D) is a 
minimal i/s/o representation of ker R(a). 

3. Since a minimal representation is unique up to similarity (Remark 1.1), we 
can take a representation as constructed in Proposition 2.1 if it is minimal. The 
state equations resulting from the matrices (E, A, B, C, D) given in (2.3)-(2.5) can 
be permuted to 

IIo O o ] a x : [ A :  A ~ ] x +  ~u, 

with 

j A 1 = diagi= 1 ..... p ".. ".. ~ ~(~-p)• 

1 0 ( h i - i )  x (n~- i )  

A2 = . ~ ~(r--p) xp 

[A'~.J 
where 

A2 i k = (qij)k=O . . . . . .  i - 2  e Nt,,-1)• Aa = [e,,-1, e,,+,2-2 . . . . .  e,-p] t �9 NP• 
j = l  . . . . .  p 

and 0 = (q~,-1)�9 Sp• (here ej denotes the j th  standard-basis vector of W-P). 
Then 

- A 2  1 --sO - (~ = det(sI - A1) d e t ( - s Q  - (~ - Aa(sI - A1)-aA2). 
[s I  - A 1 

det I -A3 

From 

n i - 2  

(_Aa( s  I _ A1)-la2)i2 _ is-(,,,-1), s - l ]  [qO, .,-z , = qis ] -~ - -  2 ak '~- (n i -1)+k 

k=O 

we get 

det(sI - A1) d e t ( - s Q  - 0 - Aa(sI -- A1)-IAz) 

= s "-p det - s O  - O~ - t s  -("'-1' k~__O q~s* = de t ( -Q) .  
/ i , j = l ,  . . . , p /  

Therefore the representation constructed in the proposition fulfills det(sE - A) = 
_+ det Q(s). This representation is minimal iff rk R(0) = p = rk (~. Now we get the 
corollary: 
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(a) If R is arbitrary, then there exists U ~ Glp(R[s, s- l])  such that rk UR(O) = 
p = rk h[UR]. It holds that det U(s) = es ~ for some k e Z, ~ e R\{0}. Thus with 
the minimal representation (E-~A, E-~B, C, - D )  for UR as constructed in Propo- 
sition 2.1 it follows that det Q(s) -- +e-~s  -k det E det(sI - E-~A). With parts 1 
and 2 this yields the first part of the corollary. 

(b) If rk R(0) = p, then the transformation U in (a) fulfills U ~ Gl~(N[s]), hence 
det U = a. This gives the other parts of the claim. [] 

In the following we show that the classical Fuhrmann realization [F, Ch. 1.10] 
applied to R = [P, Q] e E[s] p• with Q-1p  proper yields an i/s/o representa- 
tion of ker R(a). 

Firstly, if ker[P(a), Q(a)] = ~(A, B, C, D) for some (A, B, C, D), then O = 
-Q-1P(oo) .  This can be seen from the construction in the proof of Corollary 2.3, 
the uniqueness of minimal representations,and the specialconstruction in Propo- 
sition 2.1 for the case rk hiP,  Q] = rk[P, Q] = p with P, Q as (2.1), (2.2). One can 
also show that in general ker[P(a), Q(a)] = ~(A, B, C, D) implies -Q- IP(s )  = 
C(sI - A ) - I B  + D. 

Therefore, with D = - Q - 1 p ( ~ )  and P' := P + QD it holds that Q-IP'  is strictly 
proper and for (A, B, C, D) ~ E(r, m, p) we get 

ker[P(a), Q(a)] -- ~(A, B, C, D) ~:> ker[P'(a), Q(a)] = ~(A, B, C, 0). (2.7) 

Hence we can restrict ourselves to the case R = [P, Q] e ~[s] p• with Q-1p  
strictly proper. 

For the Fuhrmann realization we need the ring of Laurent series EP((s-1))= 
{ ~ ~  i ~ ~P, L E Z}. Put 

l-t_: ~ ( ( s -~) )  --, ~,((s-~)), 

i=L i=1 

the projection onto the strict proper part of the series, and 

Ha: ~P[s] --+ ~P[s], 

f ~ Q I I _ Q - ' f .  

Since I I _ Q - ~ f  = Q - i f  minus a polynomial, it is in fact Q H _ Q - l f  polynomial. 
Define K a := Im H a _ ~P[s]. It is easy to see that K a = { f ~  g~V[s]lQ-~ f strictly 
proper}. Moreover, KQ is a vector space with dim K a = deg det Q. This can 
be shown by transforming Q into Smith form Q ' =  diag(ql, . . . ,  qp). Then, by 
Fuhrmann [F, Thin. 4.11] it holds dim K a = dim Ka,. The last expression is equal 
to deg det Q', since for f = ( f l , - . . ,  fp)t e NV[s ] with f / =  alq  i d- bl, ai, bi e R[s] 
and deg bi < deg qi it follows that Ha, f = IIe,(b 1 . . . .  , bp) t = (b~ . . . .  , bp) t. 

Lemma 2.4. Let  Q ~ E[s] p• with row degrees n 1 . . . . .  np >_ 0 and h[Q] = Ip. 
Then K a = {(ft, . . . ,  fp)t~ ~P[s] [deg f / <  ni}. 
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Proofi Remember Q-i = (det Q)-I adj(Q). Since h[Q] = lp, it holds 

deg adj(Q) u = Z nl and deg adj(Q)ji < ~ th for j ~ i. (2.8) 
Ir levi 

For f = f e  k ~ R'[s] ,  fe N[s-1, it is Q - i f  = f(det  Q)-l(adj(Q)lk, . . . ,  adj(Q),~) t and 
thus 

P 

Q - ~ f  is strictly proper r deg f + deg adj(Q)k~ < deg act Q = ~ n~ r deg f < nk. 
i = 1  

With dim K o = ~f=i ni this yields the result. �9 

Now we can formulate the Fuhrmann realization. 

Proposition 2.5. For  [ P , Q ] ~ [ s ]  p• with r k Q  = p  and Q - i p  s tr ict ly  
proper,  put  

A: KQ ~ KQ, B: ~m ~ KO ' C: KQ --* ~P, 

f ~-~ Ho(sf), ~ ~ - n ~ ,  f ~ ( Q - i f )  1, 

o~ - -1  - - n  where Q - i f  = Zn=I  (Q f ) n s  . Then  it holds that ker[P(a), Q(a)] = ~(A, B, C, 0). 

Proof. 1. We consider first the case h [P, Q] = [0, lp]. Let r = ~P=I ni where nl, 
. . . ,  np > 0 are the row degrees of [P, Q]. We will show that the above defined 
operators have, with respect to a suitably chosen basis of KQ, matrix representa- 
tions, which are identical to the matrices constructed in Proposition 2.1. This 
works also in the case that some of the n~ are zero (see Remark 2.2(b)). In the case 
r = 0, the operators A, B, C vanish, whereas D = 0, so in this case there is nothing 
to prove. Let r > 0. By Lemma 2.4 we know that KQ has the basis 

d ----- { f / j  :-=- sJeili = 1 . . . . .  p, j = 0 . . . . .  n i -- 1}, 

where el denotes the ith standard-basis vector in ~P. Then the following hold. 

(a) For j < n i - 1, A ( f i j  ) = fi , j+i.  
(b) Let f = fi,n,-1 = s" ' - le i  �9 Then 

1-IQ(sf) = Q II_  Q-i(sn 'e i )  = QII_(det Q)- ls" i (adj (O)i i  . . . . .  adj(a)pi)  t. 

Since h[Q] = Ip, (2.8) yields IIQ(sf) = s n ' e i -  Qe i. With Q = (qkO = 
(~ki Snk "[- 27~01 qtisl ) we get 

p ilk--1 p nk--1 
1-IQ(sf) = -- ~ ~ qtlste k = -- Z Z q~ifk,. 

k = l  1 = 0  k = l  / = 0  

Thus, with respect to the basis d of Ke,  the image rlq(sf) h a s - -u p  to a 
minus sign--just  the (n 1 + "" + n~)th column of the matrix A given in (2.4) 
as coordinate vector. 

The matrix representation of B with respect to the basis d of K e (and the 
standard basis of Nm) is g iven--up to a minus s ign--by the matrix B as in (2.5), 

n k - 1  l l �9 since with P = (~z=o Pkj S )kj It holds that Bej = --Pej = -2P=1 27k=o 1P~jfkl. 
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Finally the matrix representation of the operator C is identical to the matrix 
C as in (2.6), since by (2.8) it follows C(fi)) = (Q-asSei)l = ei if j = ni - 1 and 0 
otherwise. 

Taking into account the minus sign in the matrix E in (2.3), we get from Propo- 
sition 2.1 that ker[P(a), Q(a)] = :~(A, B, C, D). 

2. Let hiP,  Q] = [0, Q] with (~ ~ Glv(~ ). Then [P, Q(~-I 1 fulfills the require- 
ments of Part 1 and for f ~ ~PEs] it holds I-IQ0-1(f ) = HQ(f). Therefore KQ~-x = 
Ke. Furthermore (O~Q-if)l = O,(Q-~f)~. Thus, if (A, B, C, 0 ) i s  the Fuhrmann 
realization of ker[P, Q(~-I], then (A, B, (~-~C, 0) is that of [P, Q1. Since from 
ker[P(~r), Q(~-~(a)] = @(A, B, C, 0) it follows that ker[P(a), Q(tr)] = @(A, B, 
(~-1C, 0), and we get in fact an i/s/o representation of ker[P(tr), Q(a)]. 

3. Now let [P, Q ] b e  arbitrary of full row rank and U ~ Glp(R[s]) such that 
U[P, Q] is row-proper. Then f F-, Uf  defines an B-isomorphism from KQ 
to KoQ. Furthermore, for f ~ K Q  it holds that l-IvQ(sUf)= UHQ(sf) and 
((UQ)-l(uf))l  = (Q-l f )  1. This shows that if A, B, C are the operators associated 
with UR as in the proposition and A', B', C' are those associated with R, then 
A = UA'U -~, B = UB', C = C'U -~. Since by part 2, (A, B, C) leads to an i/s/o 
representation of ker UR(a) = ker R(a), the same holds for (A', B', C'). �9 

Remark 2.6. One can check that the realization given in Proposition 2.1 as well 
as the coincidence with the Fuhrmann realization holds true also if we restrict to 
the time-axis Z+ instead of 77 or if we replace the shift by differentiation and 
consider continuous-time systems with behaviors consisting of smooth functions 
only. In these cases, the Fuhrmann realization was already recovered in [KS, 
pp. 11751 as a realization, which works also in the behavioral context. In contrast 
to Z, where a is an automorphism, it holds for Z+ and for the continuous-time 
case, that dim ker KQ = deg det Q is just the McMillan degree of the system asso- 
ciated with [P, Q] ~ E[s] v• if Q-1p is proper. Hence the Fuhrmann realiza- 
tion is always minimal, as also mentioned in [KS, p. 11771. In the case of full 
time-axis 77, the McMillan degree, i.e. the minimal possible dimension of an i/s/o 
representation of a system given by R 6 ~[s, s - l ]  v• can be computed as follows: 
let 

L 
a = ~, ajS j E ~E s, s-131 x(~) 

j=l 

(with at r 0 v ~ aL) be the vector of all p x p-minors of R. Then 6(R) := L - I is 
the McMillan degree of the system; see [W3, p. 276]. In the case R ~ R[s] v• one 
can see at once that the McMillan degree is given by the maximal degree of all 
p x p-minors of R iff rk R(0) = p. 

3. Continuity of i/s/o Representations 

We will show the continuity of the Fuhrmann realization in the case that 
deg det Q~ = deg det Q~ for almost all I ~ ~.  First we prove that this condition 
is in fact necessary for the existence of continuous i/s/o representations. 
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Proposition 3.1. For I ~ N let R ~ = [pt, Q~] ~ [R[s]~• and suppose R t ~ R ~ in 
the sense of  Definition 1.2. Further let (A t, B l, C ,  D ~) ~ Y.(r, m, p) for some r ~ N 
with ker Rt(a) = N(A  ~, B ~, C t, D ~) and (A ~, B ~, C t, D t) ~ (A ~, B ~, C ~, D ~) in the 
Euclidian topology. Then it follows that deg det Q t =  deg det Q~ for almost all 
I ~ N .  

Proof. In the above situation it is (Qt) - tU proper [W2, Prop. 4.6]. In particular, 
det Qt r 0 for all I e N. By Corollary 2.3 it holds that ZA, = V~ det Q* for some 
vte  N[s, s -1] and for all l e N. By the definition of R t ~ R  | it holds that 
deg det Qt < N for some N e N and all l ~ N and det Q* ~ det Q~. Write vt(s) = 

t s j  t Z..ai>>.k 1 ~ ' ~  vlsii with v~, r 0 and det Qt(s)= ~j>~q)_ with qt~ r 0. Then from Za~ = 
v ~ det Qt ~ R[s] it follows that k~ >_ - h  > - N .  Since multiplication by s N does 
not change continuity properties of polynomials, we can assume v~e R[s]. It 
holds that ZA' ~ )~A~, deg )~a, = deg ;(A~ and det Q~ ~ det Q~O, deg det Q~ _< 

- -  I deg det Qt for almost all I e N. Let ZA~(S) = I-IT=~ (S -- Ct[) for I e N. Then ei - e?  
for all i = 1, . . . ,  r (see e.g. [B, p. 22]). Suppose deg det Q~ = n < deg det Q~ = N 
for infinitely many l e N. Since det Q~ divides ZA,, we can assume det Q~= 
qt I - IN (s - el) for 1 ~ N and det Q~ = q~ l-IT=~ (s - ~ ) .  But then it follows again 

t by [B, p. 22] e[ ~ e~o for i = 1 . . . .  , n and e~ ~ oo for i = n + 1, . . . ,  N, which is a 
contradiction. �9 

Before starting to show the continuity of the Fuhrmann realization in the 
above-mentioned case, we present the following lemma, which can easily be 
proven. 

Lemma 3.2. Let  pt, qt ~ N[s] for 1 ~ N with p' ~ p~, qt _. q~ and deg ql = r for 
all l ~ "N. Suppose pl = atq, + b t with a t, b t ~ N[s] and deg b t < r. Then a t -* a ~ 
and b t ~ b ~. 

Let us now assume R l ~ ~[s] px(m+p) for 1 e N with R l ~ R ~. After reordering 
of the columns we can assume W ~  [p~o, Q~] with (Q~O)-lp~ proper. Put  
R t = [U, Qt] for l ~ N. In order to get continuous i/s/o representations for R ~, we 
need (Q~)-~U to be proper and, by Proposition 3.1, deg det Q~ = deg det Q~. 

Proposition 3.3. Let [U, Qt] ~ N[s]p• for l e N with [U, Qt] ~ [p~o, Q~], 
(Qt)-l pZ proper and deg det Qt = r and l ~ -N. Then: 

(a) For D t = (Qt)-lPt(oo) e N" • m, 1 ~ N, it holds that D l ~ D ~176 
(b) I f  f t ~ N[s] p for l E "N with f z  _. f , then I I e , ( f l ) - ,  IIe~(f~). I f  (Qt)-~fl is 

strictly proper for all l ~ N, it also holds ((Qt)-l f t ) l  ~ ((Q~)-lf~~ 

Proof. (a) We have (QZ)-lpl = (detQl)-tadj(Ql)pl.  Let (adj(Qz)PZ)ij= 
a~ det Qt + b~ with a~, b!.~j e N[s] and deg b~ < deg det Qt for all I s N and i -- 1, 

t ~ a~, b~ ~ b~. The prop- . . . ,  p, j = 1 . . . . .  m. Then, by Lemma 3.2, it follows a o _ ,j 
t erness of (Ql)-tpl implies a~j E N and (a~j) = D t for all I s N. This proves (a). 
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det Q~ (b) Let adj(Q')f '  = (g [ , . . . ,  g~) t �9 N[s]" and O] = a~ + b[ for all l �9 
and i = 1 . . . .  , p with deg b] < deg det Q~. Then, again by Lemma 3.2, a[ ~ a~ and 
b] ~ b?. We have 

f fQ~(ft)  = QtH_((det Q~)-~ ad j (Qt ) f  ~) 

_ _ t~O~ta~ a~O) t HQ~( f~  = f t  Qt(a ~ . . . . .  at)t ... f o  ~ t ~ . . . . .  = 

Suppose (Q~)-~ft being strictly proper for all l � 9  N. With the above notation it 
holds that ((Qt)-af~)~ = (0~)-~(/;~ . . . . .  ~)t, where / ; ] i s  the coefficient of s '-1 of b] 
and 0 t r 0 is the coefficient of s ~ in det Qt. Since t~ ~ ~ 0, the result follows. �9 

With this preparation we can state the continuity of the Fuhrmann realization 
in the mentioned case. The only thing which remains to be done, is to find contin- 
uous bases in Ke, .  

Theorem 3.4. Le t  [pt, Ql] �9 N[S]P•162 with (QZ)-~pt proper, deg det Qt = r for  
all l �9 N and [P~, Q~] ~ [po ,  QO]. Then there exist  matrices (A, B, C, D) �9 lC,(r, m, p) 
with (A t, B t, C t, D t ) ~ (A ~ , B ~ , C ~ , D ~ ) and ker [U(a), Q~(a)] = N(A t, B ~, C t, Dr). 

Proof. 1. Let D t = - ( Q l ) - l U ( o o ) .  Then from Proposition 3.3(a) we get D t ~ D ~ 
Moreover, it holds U +  Q~DZ~ p~o+ QODO" Thus we can restrict to the case 
(Q~)-IU being strictly proper. 

2. From Definition 1.2 follows the existence of N �9 N such that QZ(s) = z_,i=oX'N ~'qtsi 
for all l �9 N. Then the strict properness of (QZ)- l f  for f �9 KQ, implies KQ, _ ~ = 
{ f  �9 ~[s]p l f ( s )  = X- 'N-lc  i 2.,i=0 j~S with f~ �9 •P}. o~( is a vector space over R with basis 
d = {s'ejli = 0 . . . . .  N - 1, j = 1 , . . . ,  p}. 

3. Let ~ o =  { f~ , . . . , f o~}  be a basis of Ke~ with f o =  iie~g ~ for some 
g~ �9 N[s] p. Define f t =  Ha,g ~ �9 Then, by Proposition 3.3(b) it holds that 
f ~  f~o. This implies that ~-z= {f~ . . . . .  fit} is a basis of Ke, for sufficiently 
large I. 

4. Hence we can assume that ~ as given in part 3 is a basis of KQ~ for all l �9 N 
and f~ --* f ~ .  Let f ]  = ~N_-o1 2~=1 (a~)ij(sJel) and put M z = ((at~)ij) �9 R "N• where 
v = 1 , . . . ,  r is the column index and (i, j)  �9 { 0 , . . . , N -  1} x {1, . . . ,p}  is the row 
index. Thus, the vth column of M t consists of the coefficients of fJ  with respect 
to the basis ~r of ~l. It follows that rk M t = r for all l �9 N and by assumption 
M t ~ M% 

r ~" ao  a9  Let b ~ � 9  for I � 9  and v = l  . . . . .  r so that ~ = ~ b ~ f ~ = l b ,  f~ (in the 
sense of Definition 1.2, which means here, in the coefficients with respect to the 
basis ~r of ~"). This yields for b t = (bl . . . . .  b]) t �9 R" the convergence Mlb  t --* M ~ b  ~. 
Since rk M ~  r, there exist continuous left inverses for M ~ and this implies 
b t ~ b ~ 

The above, together with Proposition 3.3(b), shows that the operator At: 
KQ,--* KQ,, f ~ IIe,(sf) has a continuous matrix representation if we choose a 
basis as in part 3. The same argument yields a continuous matrix representation 
for Bl: ~"  ~ Kay, ~ ~ - -U(s )~ .  Proposition 3.3(b) also shows that Ct: K e, --* ~v, 
f ~ ( (Qt ) - l f )  1 leads to a continuous matrix. �9 
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Remark 3.5. (a) Let us look again at Proposition 2.1. Let Ql, pl be written as in 
(2.1), (2.2). Since the construction of the representation of ker[U(a), Qt(a)] as a 
singular system is only a reordering of all the coefficients in [U, Q~], this gives 
easily a continuous representation, if [pl, Ql] _, [p~, Q~] and/31 = ~lDt for l ~ 
with D l -~ D ~ This second requirement does not follow from [U, Ql] ~ [p~, Q| 
as one can see from the little example [U, Ql] = [/3z, ~l] = [ ( _  1)if-l, l-~]:.But it 
is easily fulfilled if one chooses the n i in (2.1), (2.2) large enough so that [P, Q] = 0. 
Hence we always get continuous singular representations. In this context, the 
question about continuous singular representations, which are minimal (in some 
sense), or about continuous i/s/o representations, which are allowed to degenerate 
in the limit to a singular one, seems to be quite interesting and much more difficult. 

(b) In the case ~ l~  Glp(~) for all l~  ~ we have _ ( Q l ) - l p l ( ~ ) =  D z ~ D  ~, 
hence we get already a continuous i/s/o representation with Proposition 2.1. But 
this is just the very special case, where [pZ, Q~] is row-proper, (Ql)- lpt  is proper 
for all l ~ t~ and the row-degrees all remain fixed in the limit. Example 3.6 shows 
that R ~ ~ R ~ in general does not imply the existence of U ~ ~ Glp(~[s, s- l ] )  with 
UZR l being row-proper for all l ~ N and UtR l - ,  U ~ R  ~ 

(c) Since the Fuhrmann realization is a minimal representation if we restrict to 
time-axis Z .  or if we consider the continuous-time case (see Remark 2.6), we get for 
these cases in Theorem 3,4 a converging sequence of minimal i/s/o representations. 

(d) Let us make a comparison with the continuity results given in [RR2] for 
the continuous-time case. In [RR1] a smooth compactification of the space of all 
AR systems is constructed via homogenization. This compact space also contains 
systems of lower degree. In [RR2] a homeomorphism between this compact space 
and an orbit space of pencil representations of the type G~ = Fz, w = H z  under 
similarity (G, F, H),,~ (SGT -1, S F T  -1, H T  -~) is given. This type of representa- 
tions were extensively studied in [KS]. It is easy to see that these representations 
generalize i/s/o representations. Following the construction in [RR2] one can 
prove that Theorem 3.4 gives an explicit version for the homeomorphism in 
[-RR2] in the special situation under consideration. More precisely, let [U, Q~] 

[s]p• ~m+p) be as in Theorem 3.4. Then the homogenized matrices do all have the 
same degree and converge in the sense of [RR2]. Thus, by I-RR2] there exists 
a converging minimal representation (G l, F l, H I) for [pZ, Qr]. The properness of 
(Ql)-lpZ implies that the data of (G l, F t, H l) can be reorganized in order to get a 
converging minimal sequence (A t, B l, C l, D t ) of i/s/o representations. 

Example 3.6. For l ~ ~ let e = 1-1 and put 

0 s: ~ R~176 = s 2 ~ ~ [ - s ] 2 x 3  

Since W ~ is row-proper with row degrees (0, 2), but R l has the minimal row 
indices (1, 1), these matrices cannot be left equivalent to converging row-proper 
matrices UIR l -~ U~ ~ with U t ~ Glp(~[s, s - l ] )  for all l ~ N. 

The construction of the Fuhrmann realization leads to the following: 
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for all I e ~ serves as the abstract state space. With respect to the basis {(0, - 1) t, 
(e, s) t} of KQ, the operators of Proposition 2.5 lead to the i/s/o representation 

tTX1 ~ - -X2~  Yl --'~ XI~ 

O'X 2 ~ - - g X  1 "4- 82X2 - -  8U, Y2 ~ - - X 1  ~ •X2 - -  U, 

which holds in fact for all l e ~ .  Not ice  that the McMil lan  degree (see [W3, 
p. 276])  of R t is equal to 2 if 1 ~ N and equal to 0 if 1 = oo; see Remark 2.6 and 
note that rk R~(0) < 2. 
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