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1 Introduction

Time-delay systems, even of the simplest type including only finitely many commensurate point-delays,
are infinite-dimensional systems and may therefore be treated best with (functional) analytic methods.
The possibility of performing nevertheless an algebraic theory for these specific systems relies on some
finiteness features. Apparently it was first in [M], where a polynomial ring in several indeterminates
was proposed as a model for time-delay systems. In the case of commensurate point-delays this model
looks as follows. Denote by σ the forward-shift of unit length, i. e. σw(t) := w(t − 1) for a function
w : R → R

m. Then each polynomial p =
∑L

j=0

∑N
i=0 pijs

izj ∈ R[s, z] in two variables gives rise to the
delay-differential operator

(
p( d

dt , σ)w
)
(t) =

(( L∑
j=0

N∑
i=0

pij
di

dti
◦ σj

)
w
)
(t) =

L∑
j=0

N∑
i=0

pijw
(i)(t − j). (1.1)
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In this paper we will adopt this model for delay-differential equations on C∞ := C∞(R, R), the space
of real-valued infinitely differentiable functions defined on R. The restriction to C∞ is basically only
for the sake of simplicity. Broader classes of functions are possible within this framework, as we will
point out in Rem. 2.9. However, for w ∈ C∞ equation (1.1) makes sense for all t ∈ R and we can even
allow backward-shifts σ−j. That means, we have the embedding

R[s, z, z−1] −→ End�(C∞)

p =
∑L

j=l

∑N
i=0 pijs

izj �−→ p( d
dt , σ) =

∑L
j=l

∑N
i=0 pij

di

dti
◦ σj

(1.2)

In this set-up the kernel of p( d
dt , σ) is given as the space of all C∞-solutions of the homogeneous

delay-differential equation p( d
dt , σ)w = 0, i. e.

ker p( d
dt , σ) :=

{
w ∈ C∞

∣∣∣ L∑
j=l

N∑
i=0

pijw
(i)(t − j) = 0 ∀ t ∈ R

}
. (1.3)

The paper [M] can be regarded as the starting point of the interpretation of a time-delay system as
a system over a ring, see also the survey [So]. Similarly to [M], in [K1] a polynomial ring, this time
with Dirac-distributions as the indeterminates, is introduced as a convolution algebra operating on
the Schwartz-space of distributions having support bounded to the left. With this algebra a theory
for the internal description of input-output equations is developed in [K1].

To our knowledge, in the more ring theoretical literature, a wider class of delay operators, including
distributed delays, was first presented in [K2]. A ring of distributions, consisting of Lloc

+ -functions
and formal sums of Dirac-impulses, is used to incorporate also the initial data in the framework, so
that solutions to the initial value problem can be obtained via an appropriate operational calculus. In
[KKT2] a ring Θ generated by the entire functions θλ(s) = 1−e−seλ

s−λ and their derivatives is introduced
in order to achieve Bézout-identities (sI − A(e−s))M(s) + B(e−s)N(s) = I with coefficient matrices
over the extension Θ[s, e−s]. In a step further, this was exploited to obtain proper stable Bézout-
factorizations for transfer functions of systems with commensurate delays. The generating function
θλ is known to be the transfer function of a specific distributed delay. This approach was recently
resumed in [BL2]. With a slight modification of the ring Θ the authors are able to prove that Θ[s, e−s]
is a Bézout-domain. They use this fact to solve a specific finite spectrum assignment problem for the
systems under consideration. This is quite parallel to the last section of the paper at hand. In fact,
with a different approach in [BL1] one can show, that Θ[s, e−s, es] is isomorphic to the ring

H :=
{p

r

∣∣∣ p, r ∈ R[s, z], r �= 0, ker r( d
dt , σ) ⊆ ker p( d

dt , σ)
}

, (1.4)

which will be the starting point for our investigation of this algebra. The fact that H is indeed a
ring and can be regarded as an operator algebra will be made precise in the next section. With this
definition we resume the algebraic approach of [G1]. Therein, after a thorough study of the algebraic
properties of H, the ring has been exploited for the study of the uniqueness of kernel-representations
for behaviors given by delay-differential equations. In a very different context, the ring of Laplace
transforms of H has been used in the paper [OP] to show the coincidence of null controllability and
spectral controllability for the class of systems under consideration.

The above cited papers should indicate that, from a system theoretical point of view, this larger ring
of operators rather than the polynomial ring R[ d

dt , σ] appears to be an adequate place for the solution
of specific control problems, if not even necessary like for finite spectrum assignment. The fact, that
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some of these problems turn out to be easily solvable (at least theoretically) within H, is based on
some nice algebraic property of this ring. Indeed, H is a Bézout-domain [G1], a fact, which is often
much more useful than the Noetherian property for polynomial rings.

In this paper we will give various equivalent characterizations for the ring H, thereby rediscovering
parts of the existing results given in the papers cited above and combining them into one picture. The
basis for this approach is the definition of H in (1.4) as well as its Bézout-property. All assertions will
be derived from these facts. The main result of Section 2 is that H is a certain convolution algebra of
compact support distributions. Although this might look somehow obvious using Laplace-transforms,
we think it is worth seeing how it can be proven directly from (1.4). However, the importance of this
result within the context of this paper rests on the fact, that it allows to abandon the restriction to
C∞-functions as used in (1.3) and (1.4). From an algebraic point of view the choice of C∞ is very
convenient to begin with, simply because it is a module over R[ d

dt , σ, σ−1]. Over the proper part of H,
however, much more general spaces like L1(R) are modules with respect to convolution, too.
In the third section we consider the question of finite spectrum assignability for time-delay systems.
The solution to this problem, or rather a slight generalization, will be derived via a Bézout-equation
over H. Using the results of Section 2, it will be shown how the corresponding controller looks like.
This way we rediscover certain results from the existing literature and see how they fit into this
algebraic framework.

It is worth mentioning that the approach does not carry over to the more general case of differential
equations with non-commensurate delays. It has been shown in [H2] that in this case the corresponding
operator ring H is not a Bézout-domain. An essentially algebraic theory for delay-differential systems
with non-commensurate delays has been developed recently in [V].

The paper follows the behavioral approach to linear systems, meaning basically that a system is not
defined through its transfer function but rather via the space of all solutions satisfying certain given
sets of equations. This is only a matter of choice, it does not really affect the results of this paper.

2 A ring of distributed delay operators

We start off with the definition of H in (1.4). Several equivalent descriptions of this space will be
derived throughout this section. First of all, from the very definition it is obvious, that H can be
embedded into EndR(C∞) via

H −→ EndR(C∞)

q :=
p

r
�−→ q̃ := p( d

dt , σ) ◦ r( d
dt , σ)−1 (2.1)

For the well-definedness see [G1, 2.8]. More precisely, for w ∈ C∞ it is q̃w = p( d
dt , σ)v, where v ∈ C∞

satisfies r( d
dt , σ)v = w; for the surjectivity of r( d

dt , σ) see also [G1, 2.10]. In the following we will use
the symbol p̃ instead of p( d

dt , σ) also for the delay-differential operators in R[ d
dt , σ, σ−1].

The definition of H in (1.4) is only fruitful, if there is an alternative way to see if a quotient p
r is in H,

hence if the inclusion ker r̃ ⊆ ker p̃ holds true. In order to do so, the following notations will be useful.

Definition 2.1 Let H(C) be the ring of entire functions. For q = pr−1 ∈ R(s, z) with p, r ∈ R[s, z]
denote by q∗ the meromorphic function given by q∗(s) = q(s, e−s) defined on {λ ∈ C | r(λ, e−λ) �= 0}.
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Exploiting the characteristic functions associated with R[ d
dt , σ, σ−1] the following has been established

in [G1, 2.7,3.1,4.1].

Theorem 2.2 The set H is a subring of R(s, z) which can be characterized in the following ways

H = {q ∈ R(s, z) | q∗ ∈ H(C)} = {q ∈ R(s)[z, z−1] | q∗ ∈ H(C)}.

The bijectivity of σ immediately implies ker(p( d
dt , σ) ◦ σk) = ker p( d

dt , σ), indicating that also polyno-
mials in z−1 appear naturally in this framework. The above theorem says that only expressions of the
form φ(s)zk with φ ∈ R[s] can occur in the denominators of the elements of H.

By its very definition, it is immediate that H is the largest subring of R(s, z) containing R[s, z, z−1]
to which the embedding (1.2) can be extended.

Example 2.3 Consider q = eλLzL−1
s−λ ∈ H with λ ∈ R and L ∈ N. Note that for L = 1 it is

q∗(s) = −θλ(s) from the introduction. In order to calculate q̃w for w ∈ C∞, we need first to find
v ∈ C∞ fulfilling ( d

dt − λ)v = w. With v(t) =
∫ t
0 eλ(t−τ)w(τ)dτ we then obtain

q̃w(t) = (eλLσL − 1)v(t) = −
∫ L

0
eλτw(t − τ)dτ,

which is known as a distributed delay. In the Thms. 2.8 and 2.10 it will be described precisely which
distributed delay operators originate from H.

In the last section about weak coefficient assignability we will need the following subrings of H. Define

H0 := H ∩ R(s)[z] =
{ p

φ

∣∣∣ p ∈ R[s, z], φ ∈ R[s]\{0}, p∗

φ
∈ H(C)

}
, (2.2)

H0,sp :=
{ p

φ
∈ H0

∣∣∣degs p < deg φ
}
⊂ H0,p :=

{ p

φ
∈ H0

∣∣∣degs p ≤ deg φ
}
⊂ H0, (2.3)

where degs p denotes the degree of p ∈ R[s, z] with respect to s. In these subrings no polynomials in
z−1 are allowed. Using H0 instead of H one avoids advanced delay-differential equations containing
the backward shift σ−1. The operators from H0,sp will shown to be convolution operators with certain
piecewise continuous functions, as it was the case in Exp. 2.3.

The rings H0 and H0,sp occured already in a different context in [OP] as RE(s) and RSPE(s) respec-
tively. Also, in [KKT2] the ring H0 was introduced, but in a completely different way. It turns out
that H0 is the ring Θ[z, s], while H0,sp is identical with Θ[z], both given at [KKT2, p. 841]. In [BL2]
and [BL1] the approach of [KKT2] has been resumed.

From the very definition one obtains immediately the decomposition

H0 = H0,sp ⊕ R[s, z]. (2.4)

In fact, if q = p
φ ∈ H0 with degs p ≥ deg φ, then p = aφ+ b with a, b ∈ R[s, z] and degs b < deg φ, thus

q =
b

φ
+ a ∈ H0,sp + R[s, z]. (2.5)

The operator rings H and H0 have some algebraic advantages compared to R[s, z] or R[s, z, z−1]. In
[G1] the following theorem about the ring H is established. A short glance at the proofs of [G1, 3.1,
3.2] ensures that the same reasoning is true for H0.
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Theorem 2.4 [G1, 3.2] The rings H and H0 are Bézout-domains, i. e. every finitely generated ideal
is principal.

This and an even nicer property imply triangular and diagonal forms for matrices over these rings,
which in turn allows a study of systems of delay-differential equations of the form P̃w = 0 with
P ∈ Hr×n and w ∈ (C∞)n in the behavioral framework [G1].

In certain cases, basically with one of the factors being monic in s, a Bézout-identity has already been
derived before, see [OP, Sect. 4], [KKT2, (3.2), (4,14)], and also Rem. 3.3 i) of this paper. In [H2] the
corresponding ring for time-delay systems with non-commensurate point-delays has been investigated.
It turns out that in that case the ring is not Bézout [H2, 5.13].

Remark 2.5 For practical purposes it is important to be able to solve Bézout-equations in H0 (resp.
H) in a constructive way. That means, for given p1, . . . , pn ∈ H0 one has to find a greatest common
divisor d ∈ H0 and coefficients ai ∈ H0 satisfying d =

∑n
i=1 aipi. We will outline a procedure for the

case, where p1, . . . , pn ∈ H0 are coprime, hence d = 1. It can easily be adjusted to the general case.
The given procedure is a slight generalization of [BL2, Thm. 1].
Step 1: Since p1, . . . , pn are also coprime as elements of R(s)[z], one can use Euclid’s algorithm to find
â1, . . . , ân ∈ R(s)[z] such that 1 =

∑n
i=1 âipi. This can be rewritten as

φ =
n∑

i=1

aipi for some φ ∈ R[s] and ai ∈ H0. (2.6)

Actually, at this point ai ∈ R[s, z], but throughout the upcoming procedure the coefficients will change
to elements of H0.
Step 2: We have to adjust the coefficients ai so that the zeros of φ can be removed. Assume φ(λ) = 0
for some λ ∈ C. The coprimeness of p1, . . . , pn in H0 is equivalent to the coprimeness of p∗1, . . . , p∗n in
H(C), see [G1, 3.1]. Therefore there is at least one non-zero p∗i (λ), say p∗1(λ) �= 0. Then (2.6) implies⎛⎜⎜⎜⎝

a∗1(λ)
a∗2(λ)

...
a∗n(λ)

⎞⎟⎟⎟⎠ ∈ ker� [p∗1(λ), . . . , p∗n(λ)] = im �

⎡⎢⎢⎢⎣
p∗2(λ) · · · p∗n(λ)
−p∗1(λ)

. . .
−p∗1(λ)

⎤⎥⎥⎥⎦
with all non-specified entries of the matrix being zero. Let⎛⎜⎜⎜⎝

a∗1(λ)
a∗2(λ)

...
a∗n(λ)

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
p∗2(λ) · · · p∗n(λ)
−p∗1(λ)

. . .
−p∗1(λ)

⎤⎥⎥⎥⎦
⎛⎜⎝c2

...
cn

⎞⎟⎠
with c2, . . . , cn ∈ C. Choose polynomials γ2, . . . , γn ∈ R[s] such that γi(λ) = ci. If λ is real, then the
ci are real, too, and γi is simply a constant, otherwise γi is at most quadratic. Now, if λ ∈ C, (2.6)
can be rewritten as

φ

(s − λ)(s − λ̄)
=

a1 − γ2p2 − . . . − γnpn

(s − λ)(s − λ̄)
p1 +

n∑
i=2

ai + γip1

(s − λ)(s − λ̄)
pi

where all coefficients are indeed in H0 and the left-hand side is a polynomial of lower degree. The real
case looks analogous.
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In this way we can repeat Step 2 until φ is a constant.
A special case is worth mentioning. If one of the pi is in R[s], say pn, then (2.6) holds true with
φ = pn, an = 1, ai = 0 for i < n. A careful study of the above procedure shows that one can always
choose γi = 0 for i �= n, which then leads to a Bézout-equation 1 =

∑n
i=1 aipi with a1, . . . , an−1 ∈ R[s]

and an ∈ H0. �

In the second part of this section we are going to describe H and H0 as certain convolution algebras
of compact support distributions.

Let D′ be the R-vector-space of distributions on R with D := {f ∈ C∞ | supp f is compact} as the
space of test-functions. Here suppf denotes the support of the function f . Furthermore, let

D′
+ := {T ∈ D′ | suppT bounded from the left} and D′

c := {T ∈ D′ | suppT compact}.
Denote with δ

(k)
a the k-th derivative of the Dirac-distribution at a ∈ R. Recall that the convolution

S ∗ T of distributions is well-defined and commutative if either both factors are in D′
+ or if at least

one factor is in D′
c. Moreover, it is associative on D′

+ or if at least two of the three factors are in D′
c.

Even more, (D′
+,+, ∗) is a domain with δ0 as the identity. For details see [S2, p. 14, p. 28/29] or [Z,

p. 124-129].

In this set-up differentiation (resp. forward-shift) corresponds to convolution with δ
(1)
0 (resp. δ1). Hence

for p =
∑L

j=l

∑N
i=0 pijs

izj ∈ R[s, z, z−1] and w ∈ C∞ we have

p̃w =
( L∑

j=l

N∑
i=0

pijδ
(i)
0 ∗ δj

)
∗ w = p(δ(1)

0 , δ1) ∗ w for all w ∈ C∞ (2.7)

and R[δ(1)
0 , δ1, δ−1] is a subring of D′

+ isomorphic to R[s, z, z−1].

For the subsequent discussions we will also need the function space

PC∞ :=

{
f : R → R

∣∣∣∣∣ ∃ tk ∈ R for k ∈ Z with tk < tk+1, limk→±∞ tk = ±∞,

f |(tk ,tk+1] ∈ C∞((tk, tk+1], R) and f(tk+) ∈ R

}
(2.8)

of piecewise smooth functions, which are left-smooth everywhere and bounded on every finite interval.
Note that C∞ ⊂ PC∞ ⊂ D′. Let

PC∞
+ := {f ∈ PC∞ | supp f bounded from the left} ⊂ D′

+.

By use of the left-derivatives we can extend the delay-differential operators p̃ for p ∈ R[s, z, z−1] from
C∞ to PC∞. Observe, that for w ∈ PC∞ equation (2.7) does not hold true anymore, as can be
readily verified by choice of p = s and w being the Heaviside-function. Instead, for a piecewise smooth
function f as in (2.8) the following formula is valid [S1, p. 37/38].

δ
(i)
j ∗ f = σjf (i) +

i−1∑
μ=0

∑
k∈�

(
f (i−1−μ)(tk+) − f (i−1−μ)(tk)

)
δ
(μ)
tk+j, (2.9)

where the sum vanishes if i = 0. Note that σjf (i) ∈ PC∞.

The next theorem is the main step towards an interpretation of H as a space of distributions. It has
been established in [K1, Prop. 4]. However, we want to present a short sketch of the proof in our
notation as we need parts of it in the upcoming discussion.
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Theorem 2.6 R(δ(1)
0 , δ1) is a subfield of D′

+.

Proof: The inclusion R(δ(1)
0 ) ⊂ D′

+ is a standard result in distribution theory, see e. g. [Z, 6.3-1].
Indeed, the inverse of φ(δ(1)

0 ) =
∑r

i=0 φiδ
(i)
0 in D′

+ for a given polynomial φ =
∑r

i=0 φis
i ∈ R[s] exists

already in the subspace PC∞
+ ⊂ D′

+ and is given by f ∈ PC∞
+ defined as

f(t) =
{

0 for t ≤ 0
h(t) for t > 0

with h ∈ ker φ̃ ⊂ C∞ and h(i)(0) =
{

0 for i = 0, . . . , r − 2
φ−1

r for i = r − 1
(2.10)

The inverse of p(δ(1)
0 , δ1) in D′

+ where p ∈ R[s, z]\{0} can be obtained by first calculating the inverse
p−1 =

∑∞
j=l pj(s)zj ∈ R(s)((z)) as a formal Laurent series in z. By i) the distributions pj(δ

(1)
0 ) ∗ δj

exist in D′
+. Since they have support in [j,∞), the series

∑∞
j=l pj(δ

(1)
0 ) ∗ δj converges in D′

+ and by

continuity of the convolution is equal to p(δ(1)
0 , δ1)

−1
. �

Example 2.7 Let us compute q(δ(1)
0 , δ1) ∈ R(δ(1)

0 , δ1) for q = eλLzL−1
s−λ . According to part i) of the

above proof define f ∈ PC∞
+ as f(t) = 0 for t ≤ 0 and f(t) = eλt if t > 0. Then q(δ(1)

0 , δ1) =
(eλLδL − 1) ∗ f = eλLσLf − f =: g ∈ PC∞

+ with g(t) = −eλt for t ∈ (0, L] and g(t) = 0 elsewhere.
Observe that g has compact support and therefore defines a convolution operator on C∞

(g ∗ w)(t) =
∫
�

g(τ)w(t − τ)dτ = −
∫ L

0
eλτw(t − τ)dτ for w ∈ C∞,

which is exactly q̃w as calculated in Exp. 2.3.

Since H ⊆ R(s)[z, z−1], we need the following explicit expression for distributions in R(δ(1)
0 )[δ1, δ−1].

Let

q =
p

φ
∈ R(s)[z, z−1] with p =

L∑
j=l

N∑
i=0

pijs
izj ∈ R[s, z, z−1] and φ =

r∑
i=0

φis
i ∈ R[s]\{0}. (2.11)

We can assume r = deg φ > 0. Let φ(δ(1)
0 )−1 = f be as in (2.10). Using (2.9) one obtains

q(δ(1)
0 , δ1) =

( L∑
j=l

N∑
i=0

pijδ
(i)
j

)
∗ f = p̃(f) +

L∑
j=l

N∑
i=1

i−1∑
μ=0

pijf
(i−1−μ)(0+)δ(μ)

j , (2.12)

where p̃(f) refers again to the left-derivative of f . Note that (2.12) is a decomposition of q(δ(1)
0 , δ1)

into a regular distribution and an impulsive part.

With the next theorem we will see that this decomposition actually reflects (2.4). Precisely, H is
shown to be the set of all compact support distributions inside R(δ(1)

0 , δ1) and the operator q̃ defined
in (2.1) is simply convolution with q(δ(1)

0 , δ1), as it was the case in Exp. 2.7. Furthermore, strictly
proper functions lead to regular distributions. Parts of the theorem could be proven easily via the
Laplace-transform. However, since we are not aware of complete suitable references for each of the
statements given below, we give a direct proof based on our approach.
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Theorem 2.8

i) The embedding R(s, z) → D′
+, q �→ q(δ(1)

0 , δ1) yields the ring-isomorphisms

H ∼= R(δ(1)
0 , δ1) ∩ D′

c,

H0
∼= R(δ(1)

0 , δ1) ∩ {T ∈ D′
c | suppT ⊂ [0,∞)},

H0,sp
∼= R(δ(1)

0 , δ1) ∩ {f ∈ PC∞ | supp f ⊂ [0,∞) and compact}.
ii) q(δ(1)

0 , δ1) ∗ w = q̃(w) for all q ∈ H and w ∈ C∞.

iii) For q ∈ H the Laplace-transform of q(δ(1)
0 , δ1) is given by L(q(δ(1)

0 , δ1)) = q∗ ∈ H(C).

Proof: i) We will use the representation (2.12) for all three isomorphisms. Hence let q ∈ H be as in
(2.11). We have to show that p̃(f) has compact support. Since φ(δ(1)

0 )−1 = f where f ∈ PC∞
+ is as

in (2.10), one obtains p̃(f)(t) = p̃(h)(t) = 0 for t > L as a consequence of h ∈ ker φ̃ ⊆ ker p̃, cf. (1.4).
Obviously, p̃(f)(t) = 0 for t < l and therefore supp q(δ(1)

0 , δ1) is compact. In order to fully establish H ∼=
R(δ(1)

0 , δ1)∩D′
c, it remains to prove that for q = ab−1 with a, b ∈ R[s, z] compactness of supp q(δ(1)

0 , δ1)
implies q ∈ H. By use of (1.4) we need to show ker b̃ ⊆ ker ã. To do so, fix w ∈ ker b̃ ⊂ C∞. Using
(2.7) and the compactness of q(δ(1)

0 , δ1) and b(δ(1)
0 , δ1), which ensures the associativity of convolution,

one calculates ã(w) = a(δ(1)
0 , δ1) ∗w = (q(δ(1)

0 , δ1) ∗ b(δ(1)
0 , δ1)) ∗w = q(δ(1)

0 , δ1) ∗ (b(δ(1)
0 , δ1) ∗w) = 0, thus

q ∈ H.
For the second isomorphism, note first that for q ∈ H0 it is l = 0, hence supp q(δ(1)

0 , δ1) ⊂ [0,∞). In
order to prove that supp q(δ(1)

0 , δ1) ⊂ [0,∞) implies q ∈ H0, consider again (2.11). We have to show
l ≥ 0. Denote K := deg pl, where pl =

∑N
i=0 pils

i ∈ R[s]. In the case K ≥ r = deg φ, the coefficient
of δ

(K−r)
l in (2.12) is given by pKlf

(r−1)(0+) �= 0. Thus the condition on the support implies l ≥ 0.
If K < r, the property h(i)(0) = 0 for i = 0, . . . , r − 2 in (2.10) shows that the nonzero function h
cannot be in the solution space of p̃l. Thus, in this case we obtain for t ∈ (l, l + 1)

p̃(f)(t) =
L∑

j=l

N∑
i=0

pijf
(i)(t − j) =

K∑
i=0

pilh
(i)(t − l) �≡ 0

which again leads to l ≥ 0.
For the last isomorphism it only remains to observe that q ∈ H0,sp implies N < r in (2.11), therefore
the impulsive part in (2.12) vanishes by construction of f in (2.10).

ii) Let q = pφ−1 ∈ H. Choose v ∈ C∞ with φ̃(v) = w, so that q̃(w) = p̃(v) by (2.1). Use of (2.7) and
the compactness of supp

(
p(δ(1)

0 , δ1)∗φ(δ(1)
0 )−1

)
, which guarantees associativity in each of the following

steps, leads to

q(δ(1)
0 , δ1) ∗ w =

(
p(δ(1)

0 , δ1) ∗ φ(δ(1)
0 )−1

) ∗ (φ(δ(1)
0 ) ∗ v

)
=

((
p(δ(1)

0 , δ1) ∗ φ(δ(1)
0 )−1

) ∗ φ(δ(1)
0 )

)
∗ v = p(δ(1)

0 , δ1) ∗ v = p̃(v) = q̃(w).

iii) is a direct consequence of the linearity and multiplicativity of L and of L(δ(i)
j ) = sie−js. �

Remark 2.9 The above reasoning shows that for q ∈ H0 the decomposition (2.12) corresponds exactly
to the decomposition (2.5). The strict proper part of q yields a regular distribution g := p̃(f) ∈ PC∞+ ,
while the polynomial part results in the impulsive sum

L∑
j=0

N−1∑
μ=0

ajμδ
(μ)
j :=

L∑
j=0

N∑
i=1

i−1∑
μ=0

pijf
(i−1−μ)(0+)δ(μ)

j .
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Hence for w ∈ C∞ it is

q(δ(1)
0 , δ1) ∗ w =

∫ L

0
g(τ)w(· − τ)dτ +

L∑
j=0

N−1∑
μ=0

ajμσjw(μ).

Moreover, if q ∈ H0,sp the sum vanishes and q̃(w) = q(δ(1)
0 , δ1) ∗ w =

∫ L
0 g(τ)w(· − τ)dτ is a simple

convolution operator which can be applied to much more general functions than C∞. For instance,
the spaces L1(R), Lloc

1 (R), C(R) or PC∞ as well as their one-sided versions are all H0,sp-modules (even
H0,p-modules) with respect to convolution. Without any need for distributions they could be used
as underlying function spaces for delay-differential equations within this framework as long as no
differentiation occurs. This is e. g. the case for the controller used in Section 3 for weak coefficient
assignment, see (3.2) and (3.4). If differentiation is involved, the above function spaces might still be
suitable if one generalizes the set-up to weak solutions.

In the last part of this section we will give a third characterization of the operators in H0, thereby
exhibiting again the close relation between H0 and point-delay systems. It will be shown that the
operators from H0,p occur as input-output-operators associated with time-delay systems of the form

ẋ = A(σ)x + B(σ)u
y = C(σ)x + D(σ)u

(2.13)

where (A,B,C,D) ∈ R[z]n×n+n×m+p×n+p×m. Let

Bext(A,B,C,D) =
{(

u
y

)
∈ (C∞)2

∣∣∣∃x ∈ (C∞)n : (2.13) is valid
}

be the external C∞-behavior of (2.13); see also [Wi, p. 274], where this space is called the manifest or
i/o-behavior. For simplicity we use again C∞ for the functions only. Using weak solutions it is possible
to derive the same result for other function spaces.

In the following characterization we restrict to the strictly proper part of H0 and include also a
description of those PC∞

+ -functions, which stem from H0,sp.

Theorem 2.10 Let g ∈ D′
c with supp g ⊆ [0, L] for some L ∈ N. Then the following are equivalent:

i) there exists q ∈ H0,sp such that g = q(δ(1)
0 , δ1),

ii) g ∈ PC∞
+ and for every k ∈ {0, . . . , L − 1} the restricted function g|(k,k+1] is a finite linear

combination of functions from the set S := {tjeλt(a sin μt + b cos μt) | j ∈ N0, λ, μ, a, b ∈ R},
iii) there exists a number n ∈ N and matrices (A, b, c) ∈ R[z]n×n+n×1+1×n satisfying

G :=
{(

u
y

)
∈ (C∞)2

∣∣∣ y = g ∗ u
}

= Bext(A, b, c, 0).

At first glance, part iii) might look suspicious. In general, the external behavior Bext(A,B,C,D)
consisting of two-sided functions can of course not be described as the graph of an input-output
operator. Indeed, if ker

(
d
dtI − A(σ)

)
is not trivial in the underlying function space (which is the

case for C∞, see [G1, 4.3]), an input u might lead to several outputs y. The only way to still have
an input-output operator is via the inclusion ker

(
d
dtI − A(σ)

) ⊆ ker C(σ), which is in fact the case
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for the system constructed below. However, the theorem would stay the same if we used one-sided
C∞-functions only.

Proof: i) ⇒ ii) follows from (2.10) – (2.12) together with Thm. 2.8 i).

ii) ⇒ i): By Thm. 2.8 iii) it suffices to show L(g) = q∗ for some q ∈ H0,sp. Linearity of L implies
that this follows once the finite Laplace transforms L̂(f)(s) :=

∫ k+1
k e−stf(t)dt of the functions f ∈ S

are shown to be in {q∗ | q ∈ H0,sp}. But this can easily be established upon using the identity
L̂(tjg) = (−1)j

(L̂(g)
)(j) and splitting the equation L̂(eαt) = (ek(α−s)(eα−s − 1))(α − s)−1 for α ∈ C

into its real and imaginary part.

i) ⇒ iii): Write q = p
φ ∈ H0,sp with φ(s) = sn +

∑n−1
i=0 φis

i ∈ R[s] and p(s, z) =
∑n−1

i=0 pi(z)si ∈ R[s, z].

Then (2.1) and (2.7) yield G = ker[q̃,−1] =
{

(u, y)T ∈ (C∞)2
∣∣∣∃ x ∈ C∞ : φ̃x = u, y = p̃x

}
. As usual

in such situations, putting

A =

⎡⎢⎢⎢⎣
0 1

. . . . . .
0 1

−φ0 · · · · · · −φn−1

⎤⎥⎥⎥⎦ ∈ R
n×n, b =

⎡⎢⎢⎢⎣
0
...
0
1

⎤⎥⎥⎥⎦ ∈ R
n, c = [p0, . . . , pn−1] ∈ R[z]1×n, (2.14)

one gets by straightforward calculation

G =
{(

u
y

)
∈ (C∞)2

∣∣∣∃ w ∈ (C∞)n : ẇ = Aw + bu, y = c(σ)w
}

= Bext(A, b, c, 0).

iii) ⇒ i): By [G2, 3.1a] it is Bext(A, b, c, 0) = ker[p̃1,−p̃2] with some pi ∈ H0 and c(sI − A)−1b =
p−1
2 p1 ∈ R(s, z) being strictly proper in s. Hence the equality{(

u
y

)
∈ (C∞)2

∣∣∣ p1(δ
(1)
0 , δ1) ∗ u = p2(δ

(1)
0 , δ1) ∗ y

}
=

{(
u
y

)
∈ (C∞)2

∣∣∣ y = g ∗ u
}

implies g = q(δ(1)
0 , δ1) with q = p1p

−1
2 ∈ H0,sp. �

In [G2, Thm. 3.2] it has been shown that the realization procedure given in the proof of i) ⇒ iii) can be
generalized to matrices [P,Q] ∈ Hp×(m+p)

0 whenever Q−1P is proper in s and detQ ∈ R(s, z) is monic
in s. These conditions can also proven to be essentially necessary for the existence of a first-order
latent-variable realization ker[P̃ , Q̃] = Bext(A,B,C,D), see [G2, Prop. 3.2].

Note that the assumption q ∈ H instead of q ∈ H0 in the above theorem would have led to matrices
(A, b, c) ∈ R[z, z−1]n

2+n×1+1×n, which in turn would have resulted in an advanced system. Actually,
with the construction in (2.14) the matrices A and b are constant. Only c involves the shift.

3 Weak coefficient assignability

In this last section we want to discuss the problem of coefficient assignability via (dynamic) state
feedback for retarded time-delay systems of the form

ẋ = A(σ)x + B(σ)u, (3.1)

10



where A and B are point-delay operators.

Let us start with the following concepts which have been well studied in the literature of systems over
rings.

Definition 3.1 A pair (A,B) ∈ R[z]n×(n+m) or the system (3.1) is said to be

i) reachable, if the matrix [sI − A(z), B(z)] ∈ R[s, z]n×(n+m) is right invertible over R[s, z], hence if
rk [sI − A(z), B(z)] = n for all pairs (s, z) ∈ C

2,

ii) pole assignable, if for all λ1, . . . , λn ∈ R[z] there exists a feedback matrix F ∈ R[z]m×n so that
det(sI − A − BF ) =

∏n
i=1(s − λi),

iii) coefficient assignable, if for all monic polynomials α ∈ R[s, z] of degree degs α = n there exists a
feedback matrix F ∈ R[z]m×n so that det(sI − A − BF ) = α. Here and in the sequel monicity
refers to the variable s, that is, α = sn +

∑n−1
i=0 αi(z)si with polynomials αi ∈ R[z].

It is known from [M, Prop. 1] that a pair (A,B) is reachable if and only if it is pole assignable. On
the other hand, coefficient assignability is stronger than reachability. Indeed, one can show by some
straightforward calculations that the system (A,B) =

(�
0 0
z 0

�
,
�−1 0

0 z2 − 1

�)
is reachable, but permits

no F ∈ R[z]2×2 so that det(sI −A + BF ) = s2 + s + (z2 + z + 2)/4 ∈ R[z, s], [Sch] and [EK1, p. 111].

In the following we will investigate the question of coefficient assignability within a broader class of
(dynamic) feedback laws. More precisely, we will allow point delays and distributed delays defined
through the operators in H0,p. By use of this class of control laws it will turn out to be possible to
assign arbitrary monic characteristic polynomials of degree n under weaker conditions than the quite
restrictive requirement of reachability.

Definition 3.2 Let (A,B) ∈ R[z]n×(n+m).

i) [BK] The pair (A,B) is called spectrally controllable, if rk [sI −A(e−s), B(e−s)] = n for all s ∈ C.

ii) (A,B) is said to be weakly coefficient assignable if for all monic polynomials α ∈ R[s, z] with
degs α = n there exists a feedback law

u = F̃ x + G̃u (3.2)

with F ∈ Hm×n
0,p and G ∈ Hm×m

0,sp such that

det
[
sI − A −B
−F I − G

]
= α. (3.3)

Remark 3.3

i) From [G1, 3.5] it can be derived that spectral controllability of (A,B) is equivalent to the right
invertibility of [sI − A(z), B(z)] as a matrix over H0. In [OP, Sect. 4] it is even established that
in this case [sI − A(z), B(z)] has a right inverse over H0,sp. The construction of right inverses is
basically the same in the two papers, although applied in different situations. One first solves a
Bézout-equation over R(s)[z] and removes in a second step any poles of the corresponding mero-
morphic functions, see Rem. 2.5. Using a rather different description of H0, the right-invertibility
has also been derived in [KKT2, (3.2)].
Moreover, in [G1, 5.5] and [RW, Thm. 2] it has been shown in different ways that spectral con-
trollability is equivalent to the controllability of the external behavior Bext(A,B, I, 0) in the sense
of [Wi, V.1]. Furthermore, in [OP] the coincidence with null controllability is established.
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ii) By (2.12) and the definition of H0,p and H0,sp the control law (3.2) is of the form

u(t) =
N∑

j=0

Rjx(t − j) +
∫ L

0
f(τ)x(t − τ)dτ +

∫ L

0
g(τ)u(t − τ)dτ (3.4)

with Rj ∈ R
m×n and where the entries of f ∈ (PC∞

+ )m×n, g ∈ (PC∞
+ )m×m are of the form as given

in Thm. 2.10 ii).

In the literature about time-delay state-space systems treated as infinite-dimensional systems a control
problem closely related to weak coefficient assignability has been studied in considerable detail: the
question of finite spectrum assignability. This notion refers to the same equation (3.3) but with regard
to the following situation. On the one side, only polynomials α ∈ R[s] are being considered. This
results in a prescribed finite spectrum of the closed loop system, which in most cases is the desirable
property. On the other side, a fairly broader class of feedback laws is allowed, namely feedbacks as
given in (3.4) but with arbitrary L2-functions f and g, see e. g. [MO], [WIK, Def. 2.1], [Wa, p. 546],
[WNKI, p. 1378], [WNK], and [BL2]. Several results about finite spectrum assignability have been
obtained within this context (see again the papers cited above). In particular, in [Wa] it is shown
that (3.1) is finite spectrum assignable if and only if it is spectrally controllable. As we will see
next, this equivalence still holds true after replacing finite spectrum assignability by weak coefficient
assignability. Indeed,

Theorem 3.4 A pair (A,B) ∈ R[z]n×(n+m) is spectrally controllable if and only if it is weakly coef-
ficient assignable.

Knowing the results from the literature, this theorem does not come as a surprise. It simply says that
all controllers for finite spectrum assignment fall into the class H0,p or can be made to do so. Hence,
although an infinite-dimensional system, only finitely many parameters need to be found to determine
a controller. In Exp. 3.5 it will be shown for a special case how this can be practically accomplished.
In the single-input case and for α ∈ R[s] the result can also be found in [BL2], the proof being based
on the description of H0 introduced in [KKT2]. We think it is worth giving as short proof within the
present framework. It also exhibits that the generalization from finite spectrum to arbitrary closed
loop polynomials α ∈ R[s, z] is evident in the algebraic setting. The key step in the proof of the
multi-input case will be a type of Heymann-Lemma for (3.1), which has been established in [Wa].

Thm. 3.4 also resembles the known characterization of stabilizability of (3.1) via a stable right-inverse
of [sI −A(e−s), B(e−s)], see [EK2, 2.5]. In this case even a finite-dimensional stabilizing compensator
exists, see [KKT1, 1.3]

Proof: Only “⇒” requires proof. Choose a monic α ∈ R[s, z] with degs α = n.
1. case: m = 1
For j = 1, . . . , n + 1 denote by pj ∈ R[s, z] the n× n-minor obtained from [sI −A,−B] after deleting
the jth column, hence especially pn+1 = det(sI −A). The spectral controllability of (A,B) yields that
p1, . . . , pn+1 are coprime as elements of the Bézout-domain H0. Thus there exist r1, . . . , rn+1 ∈ H0

such that

α = pn+1rn+1 − pnrn + pn−1rn−1 − . . . + (−1)np1r1 = det
[
sI − A −B

q rn+1

]
(3.5)
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with q = (r1, . . . , rn) ∈ H1×n
0 . According to (2.4), write q = q1+d1 with q1 ∈ H1×n

0,sp and d1 ∈ R[s, z]1×n.
Moreover, usual division with remainder applied to the polynomial matrices d1 and sI − A leads to
an equation d1 = h(sI − A) + d, where h ∈ R[s, z]1×n and d ∈ R[z]1×n. Therefore,

α = det
[
sI − A −B
q1 + d rn+1 + hB

]
= det

[
sI − A −B

f1

φ
c
φ

]
(3.6)

where q1 + d = f1

φ ∈ H1×n
0,p and rn+1 + hB = c

φ ∈ H0. Thus f1 is a polynomial vector with entries of
degree at most ρ := deg φ and c is a scalar polynomial.
Assume φ ∈ R[s] to be monic. Then φα = det

�
sI − A −B

f1 c

�
yields that c ∈ R[s, z] is monic and of

degree degs c = ρ, too. Therefore we can write c
φ = 1 − g with some g ∈ H0,sp and the result follows.

2. case: m > 1
Without restriction suppose the first column b1 of B to be nonzero. By [Wa, Thm. 2.1] there exists
K ∈ R[z]m×n so that (A + BK, b1) is spectrally controllable. Hence, the 1. case yields f ∈ H1×n

0,p and

g ∈ H0,sp satisfying α = det
�
sI − A − BK −b1

−f 1 − g

�
. With

F =

⎡⎢⎢⎢⎣
f
0
...
0

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
1 − g

1
. . .

1

⎤⎥⎥⎥⎦K ∈ Hm×n
0,p , G = diag(g, 0, . . . , 0) ∈ Hm×m

0,sp (3.7)

equation (3.3) is obtained. �

In [Wa] it is shown that the matrix K needed for the case m > 1 can be obtained constructively in
a finite number of steps. Together with the procedure given in Rem. 2.5 for the Bézout-equation one
can therefore construct the controller algorithmically. A particular simple case arises if the delays
occur only in the input, that is, if A is a constant matrix. We exhibit the procedure for this case in
the following example.

Example 3.5 We consider the finite spectrum assignment problem, hence α ∈ R[s].

a) In the case of a (single-input) spectrally controllable pair (A,B) ∈ R
n×n × R[z]n the polynomial

pn+1 = det(sI−A) is in R[s]. Therefore, a combination of the procedure of Rem. 2.5 and the above

proof yields α = det
�
sI − A −B

f 1 − g

�
with a constant f ∈ R

1×n and g ∈ H0,sp.

We illustrate this with the (unstable) pair [sI − A,−B] =
[

s 0 −z
−1 s − 1 0

]
to which we want to

assign the stable closed loop polynomial α = (s+1)(s+2). The minors p1 = z(s−1), p2 = −z, p3 =
s(s − 1) are coprime in H0, so (A,B) is spectrally controllable. Starting with the trivial equation
s(s − 1) = 0 · p1 + 0 · p2 + 1 · p3, the procedure in Rem. 2.5 requires two steps after which

1 = −p1 − esp2 +
1 + (z − ez)s − z

s(s − 1)
p3

is a Bézout-equation in H0. Hence

α = det

⎡⎢⎣ s 0 −z
−1 s − 1 0
−α esα (1+(z−ez)s−z)α

s(s−1)

⎤⎥⎦ = det

⎡⎢⎣ s 0 −z
−1 s − 1 0

6e − 2 6e 1 − (6ez−2z−4)s+2z−2
s(s−1)

⎤⎥⎦ ,
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where the second expression follows after elementary row transformations which produce constants
in the first two entries of the last row (this step corresponds to the division with remainder of
d1 by sI − A in the above proof leading to (3.6)). The convolution operator associated with
g = (6ez−2z−4)s+2z−2

s(s−1) = 2(1−z)
s + 6(ez−1)

s−1 is obtained from Exp. 2.7 and leads finally to the controller

u(t) = (2 − 6e)x1(t) − 6ex2(t) +
∫ 1

0
(2 − 6eτ )u(t − τ)dτ.

b) In the case n = m = 1 with arbitrary A = a ∈ R, B = b(z) ∈ R[z] and α = s + α0 ∈ R[s] the
procedures result in

u = −b(e−a)−1(a + α0)x + g̃u where g = (a + α0)
b(e−a)−1b(z) − 1

s − a
∈ H0,sp.

So e. g. for b(z) = zL the controller equation simply reads as (see again Exp. 2.7)

u = −eaL(a + α0)x − (a + α0)
∫ L

0
eaτu(· − τ)dτ,

which for L = 1 has been obtained before with completely different methods in [MO, (2.13),(2.16)].
c) In [MO] even more has been shown. Also in the multi-input case a spectrally controllable pair

(A,B) with A being constant and B =
∑M

j=0 Bjz
j admits a controller with a constant matrix

F . This result cannot simply be derived from our proof. However, the controller given in [MO,
Thm. 2.2] is in the class H0,p; it can be written as in (3.2) with some F ∈ R

m×n and G =
F
∑M

j=0(z
jI − e−jA)(sI −A)−1Bj , which is easily seen to be in Hm×m

0,sp by using the matrix version
of (1.4), see [G1, 4.4].

Remark 3.6 It can be shown that the controller given in (3.2) always admits a first-order realiza-
tion, i. e. one can find matrices (Â, B̂, Ĉ, D̂) ∈ R[z]r×r+r×n+m×r+m×n so that ker[−F̃ , I − G̃] =
Bext(Â, B̂, Ĉ, D̂), see [G2, Thm. 3.2]. Using such a realization, the equations of the closed loop system
are (

ẋ
ẇ

)
=

[
A(σ) + (BD̂)(σ) (BĈ)(σ)

B̂(σ) Â(σ)

](
x
w

)
u = [ D̂(σ) Ĉ(σ) ]

(
x
w

)
This system shows the close connection to the classical framework of dynamical (state-) feedback for
state-space systems. It has been studied widely in [H1] with respect to stabilizability.

Under an additional condition on the matrix B one can achieve weak coefficient assignability already
with the simpler feedback law u = F̃ x with F ∈ Hm×n

0,p .

Corollary 3.7 Let (A,B) ∈ R[z]n×(n+m) be spectrally controllable and suppose the entries of B are
coprime in R[z]. Then, for every monic α ∈ R[s, z] with degs α = n there exists F ∈ Hm×n

0,p such that

det
[
sI − A −B
−F I

]
= α, (3.8)

i. e. the feedback law is given by u = F̃ x.
In particular, the above conditions are met by reachable pairs (A,B).
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Proof: Let U ∈ Gln(R[z]) and V ∈ Glm(R[z]) with detU = det V = 1 and B1 := UBV is in
Smith-form. Then by the condition on B the first row of B1 is of the form (β, 0, . . . , 0) ∈ R

1×m

with β �= 0. Thus the first column of B1 is nonzero and as in the proof of Thm. 3.4 we get α =
det

�
sI − UAU−1 −B1

−F I − G

�
with F ∈ Hm×n

0,p and G ∈ Hm×m
0,sp as in (3.7). The strict properness of g ∈ H0,sp

yields (s − a(z))g ∈ H0,p for all a ∈ R[z] and hence addition of the first row of [sI − UAU−1,−B1]
multiplied by β−1g to the first row of [−F, I − G] leads to

α = det
[
sI − UAU−1 −UBV

−F1 I

]
= det

[
sI − A −B
−V F1U I

]
where the entries of F1 and consequently those of V F1U are all in H0,p. �

We close the paper with the following example.

Example 3.8 Consider again the system (A,B) =
(�

0 0
z 0

�
,
�−1 0

0 z2 − 1

�)
which was seen to be reach-

able but not coefficient assignable in the sense of Def. 3.1. The pair (A,B) fulfills the conditions of
Cor. 3.7. In this case it is easy to obtain for any prescribed polynomial α = s2 + as + b ∈ R[z][s]

the controller F =
�
a − b z−1

s
b

0 0

�
∈ H2×2

0,p satisfying (3.8). Hence the feedback law is given by

u1 = a(σ)x1 +
∫ 1
0

(
b(σ)x1

)
(· − τ)dτ + b(σ)x2 and u2 = 0.
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