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1 Introduction

In the theory of linear finite-dimensional control systems over a field K the question of realizability
for causal transfer functions has been investigated in full detail. It has been known since a long
time how to realize a given rational function G =

∑∞
i=0 Gis

−i ∈ K[[s−1]]p×m as the transfer function
G = C(sI−A)−1B+D of a state-space system and what the minimal dimension of such a realization
is going to be. As a specific algebraic model for a (minimal) realization the so-called Fuhrmann-
realization has been proven very fruitful. It does not realize directly the sequence Gi of coefficients
of a transfer function, rather it is based on polynomial factorizations Q−1P of G, see [4] or [5].
This allows a generalization to the behavioral context, i. e. to input/state/output-representations
for behaviors given as ker[P,Q], where [P,Q] denotes a certain operator matrix. For discrete-time
behaviors the Fuhrmann-realization has been established in [15, 6]. In [10], Fuhrmann’s construction
was carried out in a slightly different way for so-called solution modules. The latter objects were
introduced as a description for certain continuous-time systems over R and can be regarded as an
early version of behaviors.

Since the seventies, also linear systems over commutative rings have been studied, see e. g. the
surveys [17, 21, 13] and the references therein. The main motivation for these investigations seemed
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to be the fact, that time-delay systems can be described as differential systems over a (polynomial)
ring of delay-operators, see [12]. Ever since, a lot of progress has been made also in the area of
realization theory for transfer functions of linear systems over rings [22, 20, 1]. In particular, the
Fuhrmann-realization was established for systems over commutative rings, see e. g. [14].

In this paper we want to generalize this construction to linear multi-operator systems in the be-
havioral framework. The starting point will be a polynomial matrix [P,Q] in several variables
representing a list of mutually commuting operators acting on a module A, the latter one serving
as the underlying function space for the external variables. This model covers e. g. specific types
of delay-differential, partial differential, or discrete-time mD-systems. A list of examples will be
given in the next section.

It will be shown that under certain conditions on the matrix [P,Q], the polynomial model of
Fuhrmann provides a realization of the behavior kerA[P,Q] as an input-output system with a
latent variable. This variable is governed by a dynamical equation which is explicit and of first
order with respect to one of the several operators. In contrast to onedimensional systems, in the
present case the latent variable does not represent (in general) the state of the system, but rather
describes the evolution.

The conditions to be imposed on the module A for the procedure to work are amazingly weak,
see equation (2.1). One should bear in mind that after all the classical construction of Fuhrmann
is based on i/o-operators acting on Laurent-series, whereas, the behavioral approach to (linear)
control theory as introduced by Willems about a decade ago [24] is based essentially on the space
of all input-output-trajectories of a system (the behavior). With appropriate choices of the function
space A, such behaviors comprise in general also the uncontrollable part of the system, hence a
subspace which can not be recognized in the transfer function approach. However, the latter
approach can be incorporated in the behavioral language as a special case by choosing A as the
space of Laurent-series, see Exp. 2.10.a). The general behavioral description provides therefore
a closer look at the situation. Systems with identical transfer functions need not have the same
behavior, see Exp. 2.10.b).

Having in mind this gap between the transfer function approach and the behavioral setting, it is
the aim of this paper to prove the strength of Fuhrmann’s construction. The realization procedure
can be generalized straightahead to quite general function modules A in place of K((s−1)) and,
additionally, to polynomial rings of several operators instead of K[s] only. However, once the
procedure is established, it is natural to investigate properties like minimality and uniqueness of
the realization. It turns out that with regard to these questions the situation becomes much more
involved. In particular, the answers depend on the specific choice of the system class, making a
unifying treatment impossible.

We proceed as follows. In the next section the model for the class of multi-operator systems is
introduced and justified via a list of examples. Moreover, the concept of behavioral first-order
realization is defined and discussed. In Section 3 the construction of Fuhrmann is carried out for
this general setting. Finally, in the 4th section some problems about minimality and necessary
conditions for realizability are addressed and partial results are given.
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2 The polynomial model for the systems description

In this section we shall introduce the polynomial setting and the classes of systems for which the
Fuhrmann realization will work. A list of examples covered by this model is given thereafter. These
examples will be revisited several times throughout the paper. At the end of this section the notion
of behavioral first-order realization is introduced and discussed.

Denote by K[z1, . . . , zl, s] the polynomial ring in l+1 indeterminates over an arbitrary field K. The
indeterminate s is distinguished only because later we will construct realizations which are explicit
and of first order with respect to s. For the time being there is no particular meaning to s. We
will also use the notation K[z] := K[z1, . . . , zl] for the polynomial ring in the first l indeterminates
and K[z, s] for K[z1, . . . , zl, s].

Let A be a non-zero divisible K[z, s]-module, i. e.

p ∈ K[z, s]\{0} =⇒
{
A −→ A
a 7−→ pa

}
is surjective. (2.1)

As a consequence, A is a faithful K[z, s]-module, that is,

K[z, s] ⊆ EndK[z,s](A) (2.2)

via the above given multiplication operators.

The situation of a polynomial operator ring acting on a divisible module A is a special case of
the AR-systems studied by Habets, see [9, 4.1]. In [9] the general situation of an operator ring
acting on a module is studied with the goal to describe the relationship between different (matrix-)
operators having the same kernel.

A matrix R ∈ K[z, s]p×q induces the two K[z, s]-linear maps

K[z, s]q −→ K[z, s]p Aq −→ Ap

v 7−→ Rv a 7−→ Ra
(2.3)

As we will deal with both maps, we will use the notions kerK[z,s] R and im K[z,s]R, resp. kerAR and
imAR for the kernel and image of the first resp. second map.

Divisibility of A generalizes to the matrix case in the usual way.

Lemma 2.1 Let R ∈ K[z, s]p×q be of full row rank and A be any divisible K[z, s]-module. Then
imAR = Ap.

The proof is standard, see, e. g., [2, p. 901] or [9, Section 4]. However, to make the paper more
self-contained we include the few lines of arguments.

Proof: By the rank assumption we can assume without restriction that R is partitioned as
R = [P,Q] with a non-singular matrix Q ∈ K[z, s]p×p. Let a = (a1, . . . , ap)T ∈ Ap and choose
b = (b1, . . . , bp) ∈ Ap with (det Q)bi = ai for i = 1, . . . , p, which is possible by (2.1). Then

a = Q(adj Q)b = [P,Q]
„

0
(adj Q)b

«
, which completes the proof. 2

The K-vector space A should be regarded as a function space with a list of l+1 mutually commuting
operators acting on it. This model applies in fact to several classes of linear systems, as we will
describe next.
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Example 2.2 (Delay-Differential Systems)
Let A = C∞(R, R) and denote by σi the shift operator of length τi > 0, i. e. (σif)(t) = f(t − τi).
Then R[σ1, . . . , σl,

d
dt ] is the ring of all delay-differential operators of the form

p =
∑′

ν=(ν1,...,νl)∈Nl

N∑
i=0

pν,iσ
ν1
1 ◦ . . . ◦ σνl

l ◦ di

dti
, pν,i ∈ R (2.4)

where
∑′ means this sum being finite. The space A is an R[σ1, . . . , σl,

d
dt ]-module in the natural

way. Precisely, for p as in (2.4) and f ∈ A one obtains

pf(t) =
∑′

ν∈Nl

N∑
i=0

pν,if
(i)(t− 〈ν, τ〉), t ∈ R

with 〈ν, τ〉 =
∑l

j=1 νjτj denoting the usual scalar product. It is obvious that the operators
σ1, . . . , σl, and d

dt ∈ EndR(A) mutually commute. Moreover, if τ1, . . . , τl ∈ R are chosen to be
linearly independent over Q, then σ1, . . . , σl,

d
dt are algebraically independent elements in the ring

EndR(A), see [12, Sec. 2]. Thus, R[σ1, . . . , σl,
d
dt ] is a polynomial ring in l + 1 indeterminates.

Furthermore, it is a deep result in [3, p. 291], that non-zero polynomial delay-differential operators
are surjective on A.

The following examples from multidimensional systems theory are studied in detail in the very
comprehensive paper [18]. They all constitute so-called large injective cogenerators A in the cate-
gory of K[z, s]-modules. As this property itself is not needed throughout this paper, we refer the
interested reader to [18] for the very definition. More important are the consequences for operators
acting on A. We will list some of them in the following example. This will imply in particular
property (2.1), which in some of the cases below is, of course, a classical result. In Remark 2.5 we
will explain why the delay-differential case is not covered by [18].

Example 2.3 (Multidimensional Systems)
Consider the following situations:
a) K[z, s] = C[ ∂

∂x1
, . . . , ∂

∂xl+1
] and A = C∞(Rl+1, C) or A = D′(Rl+1), the space of complex-valued

distributions on Rl+1,
b) K[z, s] = R[ ∂

∂x1
, . . . , ∂

∂xl+1
] and A = C∞(Rl+1, R) or A = D′R(Rl+1), the space of real-valued

distributions,
c) K any field, K[z, s] = K[z1, . . . , zl+1], and A := {

∑
n∈Nl+1 a(n)tn1

1 · . . . · tnl+1

l+1 | a(n) ∈ K} the
K-algebra of formal power series in l + 1 indeterminates over K. A becomes a K[z, s]-module
via the backward shifts with truncation

zi

( ∑
n∈Nl+1

a(n1, . . . , nl+1)tn1
1 · . . . · tnl+1

l+1

)
=

∑
n∈Nl+1

a(n1, . . . , ni + 1, . . . , nl+1)tn1
1 · . . . · tnl+1

l+1 .

This is usually the framework being used in the study of discrete-time mD-systems [25]. One
may allow K to be a finite field as it is done in coding theory [23].

It is the main result of [18] that all situations above have some strong algebraic structure in common,
see [18, (54) p. 33]. As a consequence, operators acting on A show some nice features, resembling
the situation of ordinary differential or difference equations. We only list the following:
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(1) [18, (46), p. 30] For P ∈ K[z, s]n×m and Q ∈ K[z, s]l×n one has kerK[z,s] P
T = im K[z,s]Q

T ⇐⇒
kerAQ = imAP .

(2) In particular, if P ∈ K[z, s]n×m has rank n, then imAP = An.
(3) [18, (61), p. 36] For P ∈ K[z, s]n×m and R ∈ K[z, s]r×m it is kerA P ⊆ kerAR ⇐⇒ R = XP

for some X ∈ K[z, s]r×n.
For the main part of this paper, only (2) is needed as it implies the divisibility of A. In Remark 2.5
we will see that (1) is not satisfied for delay-differential systems, explaining why this case is not
covered by [18]. We will use (1)–(3) later in the examples when discussing multidimensional systems
in more detail, see 2.10.c) and 4.3.

Example 2.4 (Transfer Functions)
Trivial examples for non-zero divisible K[z, s]-modules are, of course, A = K(z, s) and A =
K(z)((s−1)) = {

∑N
i=−∞ fis

i |N ∈ Z, fi ∈ K(z)} with the natural K[z, s]-module structure. In this
case, behavioral theory coincides with the transfer function framework as we will see in Exp. 2.10.a).

Remark 2.5 We briefly illustrate why the situation discussed in [18] does not cover delay-
differential systems, cf. [18, p. 17]. It suffices to consider systems with commensurate delays only.
Hence, let K[z, s] = R[z1, s] with z1f(t) = f(t − 1) and sf = ḟ . Let A be the R[z1, s]-module
A = C∞(R, R). Consider the following matrices

P =
[
z1 − 1

s

]
∈ R[z1, s]2×1, Q = [s, 1− z1] ∈ R[z1, s]1×2.

Note that kerR[z1,s] P
T = im R[z1,s]Q

T, while imAP $ kerAQ as can be seen by the constant function
w = (0, 1)T ∈ A2. Therefore, property (1) in Exp. 2.3 is violated showing that A is not a large
injective cogenerator (actually, this means that A is not an injective R[z1, s]-module).

Remark 2.6 So far, it does not play any role having one of the variables distinguished. Even more,
if x1, . . . , xl+1 are algebraically independent elements over K, the same is true for y1, . . . , yl+1, where

(y1, . . . , yl+1)T = A(x1, . . . , xl+1)T + (b1, . . . , bl+1)T

for some A ∈ Gll+1(K) and b ∈ K l+1. In particular, K[y1, . . . , yl+1] = K[x1, . . . , xl+1].
E. g. in Exp. 2.2, the polynomial ring can also be described as R[ d

dt , σ1 − 1, . . . , σl − 1], where we
replaced the shift operators by the corresponding difference operators and changed the ordering of
the indeterminates. In this case, the list of operators (z1, . . . , zl, s) reads as ( d

dt , σ1 − 1, . . . , σl − 1),
so that s = σl − 1 is the distinguished operator. The procedure of the next section would hence
result in a realization with respect to the last difference operator σl − 1 in place of the differential
operator d

dt as being indicated in the original situation of Exp. 2.2.

Let us return to the general case with a divisible K[z, s]-module A. For R ∈ K[z, s]p×q the kernel
kerAR is a submodule of Aq and can be viewed as the behavior of a dynamical system in the sense
of [24], only one has to accept the multidimensional time-axis Rl+1 or Nl+1 in Exp. 2.3. In this
sense, if R is given as R = (Rij) i = 1, . . . , p

j = 1, . . . , q

, the associated behavior

kerAR =
{

(a1, . . . , aq)T ∈ Aq
∣∣∣ q∑

j=1

Rijaj = 0 for i = 1, . . . , p
}
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is made of all trajectories in Aq which are governed by a system of (higher order) equations, e. g.,
delay-differential equations, partial differential equations, or partial difference equations. The q
coordinate functions of (a1, . . . , aq)T ∈ kerAR are called the external variables of the behavior.

It is the aim of this paper to show that under specific circumstances the behavior kerAR can be
represented as the external behavior of an explicit first-order input/latent variable/output system.
More precisely, the following version of realizability will be investigated.

Definition 2.7 A matrix R ∈ K[z, s]p×(m+p) is called realizable, if there exists a number n ∈ N
and matrices (A,B, C, D) ∈ K[z]n

2+nm+pn+pm so that

kerAR = Bext(A,B, C, D) :=
{(

u
y

)
∈ Am+p

∣∣∣ ∃x ∈ An :
sx = Ax + Bu
y = Cx + Du

}
. (2.5)

In case such matrices exist, we call the quadruple (A,B, C, D) a realization of R.

Remark 2.8 Equation (2.5) indicates, that the first m of the (external) variables in kerAR have
the usual properties of inputs, while the last p variables can be regarded as outputs of the system. In
fact, by the surjectivity of full row rank matrices, for every u ∈ Am there exists some (non-unique)
trajectory y ∈ Ap so that (uT, yT)T ∈ kerAR. A reordering of the columns of R would reflect the
possibility of a different partition of the m + p external variables into inputs and outputs. This
additional freedom of choice would be more adequate in the behavioral approach. We will assume
that such a reordering has already been carried out.
Anyway, realizability in the sense of Def. 2.7 requires the system to have exactly p outputs, where p
is the number of equations governing the system. The remaining external variables form a maximal
set of inputs. As we will see in Exp. 2.10 and in Exp. 4.3, this notion of realizability implies in most
cases R to be of rank p, and thus of full row rank if of the size p× (m + p). Hence, while R might

be realizable,
»
R
0

–
certainly is not, although kerAR = kerA

»
R
0

–
. Actually, we will be imposing

the full row rank condition on R for the realization procedure. Therefore, our considerations are
restricted to behaviors which admit a full row rank kernel representation (which we have at our

disposal for the realization procedure) and the above little example kerA
»
R
0

–
is not really excluded.

However, this restriction is indeed crucial: since K[z, s] is not a principal ideal domain, it is in
general not possible to eliminate linearly dependent rows of R without changing the associated
behavior kerAR. We will study the above examples 2.2 - 2.4 at the end of this section under this
point of view.

As it is well known, realization of transfer functions and of behaviors are in general not the same
thing, see also Exp. 2.10.b) However, the following relationship can be proven. The second of the
following statements will be crucial later as it relates polynomial equations with operator identities
on A. It is a generalization of the purely differential version given in [19, Lemma 2.1].

Proposition 2.9 Let (A,B, C, D) ∈ K[z]n
2+nm+pn+pm and R = [P,Q] ∈ K[z, s]p×(m+p) be of

rank p.

a) If (2.5) is valid, then Q is non-singular and

−Q−1P = C(sI −A)−1B + D. (2.6)

In particular, Q−1P is a matrix over the ring K[z][[s−1]]p×m of power series in s−1 with coefficients
from K[z].
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b) Suppose that X := −QC(sI − A)−1 ∈ K[z, s]p×n, i.e. is polynomial, and that the polynomial
matrix [X, R] ∈ K[z, s]p×(n+m+p) is right-invertible over K[z, s]. Then equation (2.6) implies

kerA[P,Q] = Bext(A,B, C, D)

for any non-zero divisible K[z, s]-module A.

Recall that right-invertibility of [X, R] as a matrix over K[z, s] is identical to zero primeness of
[X, R], i. e., rk [X(λ1, . . . , λl+1), R(λ1, . . . , λl+1)] = p for all (λ1, . . . , λl+1) ∈ K̄ l+1, where K̄ denotes
the algebraic closure of the field K; this is an easy consequence of Hilbert’s Nullstellensatz, see e. g.
[27, p. 161] for the matrix version.

Proof: a) From (2.5) one can derive the equation

M := QCadj (sI −A)B + det(sI −A)QD + det(sI −A)P = 0. (2.7)

In fact, by (2.2) it is enough to show that Mu = 0 for all u ∈ Am. Thus, let u ∈ Am be arbitrary
and choose x ∈ An so that Bu = (sI−A)x, see Lemma 2.1. Put y = Cx+Du. Then Pu+Qy = 0
and

QCadj (sI −A)Bu + det(sI −A)QDu + det(sI −A)Pu

= QCadj (sI −A)(sI −A)x + det(sI −A)QDu + det(sI −A)Pu

= det(sI −A)(QCx + QDu + Pu)

= 0,

which proves Mu = 0. Equation (2.7) implies

[P,Q]
[

Im

C(sI −A)−1B + D

]
= 0,

considered as an equation over the field K(z, s). Since both matrices are of full rank, this implies
det Q 6= 0 as well as (2.6).

b) By Serre’s conjecture on projective modules over polynomial rings proven by Quillen/Suslin, see
[16, pp. 490] or [26, p. 513], the matrix [X, R] can be completed to a unimodular matrix[

U1 U2

X R

]
∈ Gln+m+p(K[z, s]).

Using R = [P,Q], the assumptions can be restated as the matrix identity[
U1 U2

X R

]sI −A −B
0 Im

C D

 =
[
T
0

]
,

where T = U1[sI − A,−B] + U2

»
0 Im

C D

–
∈ K[z, s](n+m)×(n+m). Since detT 6= 0, the associated

operator is surjective on An+m by Lemma 2.1 and we may argue as follows:

Bext(A,B, C, D) =

{(
u
y

)
∈ Am+p

∣∣∣∣∣∃ ξ ∈ An+m :

0
u
y

 =

sI −A −B
0 Im

C D

 ξ

}

=

{(
u
y

)
∈ Am+p

∣∣∣∣∣∃ ξ ∈ An+m :
[
U2

R

](
u
y

)
=

(
T
0

)
ξ

}
= kerAR = kerA[P,Q]. 2
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We close this section with a discussion of the full row rank condition of Prop. 2.9 in the main
examples 2.2-2.4.

Example 2.10
a) (Transfer Functions) Let K be any field and consider A = K(z, s) or A = K(z)((s−1)), both of

which are K[z, s]-modules in the natural way, see Exp. 2.4. Then

Bext(A,B, C, D) =
{„

u
y

«
∈ Am+p

∣∣∣ y = (C(sI −A)−1B + D)u
}

= kerA[−C(sI −A)−1B + D, Ip] = kerA[P,Q]

where −Q−1P = C(sI−A)−1B +D is any factorization of the transfer function into polynomial
matrices (which, of course, exists). Thus, in this case, Bext(A,B, C, D) admits a full row rank
kernel representation [P,Q] ∈ K[z, s]p×(m+p). Obviously, for this special choice of A realization
of behaviors is identical to realization of transfer functions.

b) (Delay-Differential Systems) In the case of Exp. 2.2 above, where s = d
dt and z1, . . . , zl are shift

operators of noncommensurate lengths τ1, . . . , τl, a realization as in (2.5) results in a time-delay
system of the form

ẋ(t) =
∑′

ν∈Nl

Aνx(t− 〈ν, τ〉) +
∑′

ν∈Nl

Bνu(t− 〈ν, τ〉)

y(t) =
∑′

ν∈Nl

Cνx(t− 〈ν, τ〉) +
∑′

ν∈Nl

Dνu(t− 〈ν, τ〉)

with constant matrices Aν , Bν , Cν , and Dν .

The special case l = 1, i. e., commensurate delays, has been investigated in detail in [7, 8]. From
these papers one can deduce the following results concerning realizability.
i) [8, Thm. 3.1 (a)] The behavior Bext(A,B, C, D) with sizes as in Def. 2.7 does always admit

a full row rank kernel representation, hence Bext(A,B, C, D) = kerA[P̂ , Q̂] for some full row
rank matrix [P̂ , Q̂] ∈ R[z1, s]p×(m+p).

ii) [7, Prop. 4.4] If R = [P,Q] ∈ R[z1, s]p×(m+p) satisfies (2.5), then i) yields [P,Q] = W [P̂ , Q̂]
with some non-singular W ∈ R(s)[z1, z

−1
1 ]p×p, thus rk [P,Q] = p. (Actually, W is unimodular

over some subring H of R(s)[z1, z
−1
1 ] as investigated in [7].) Moreover, det Q is monic after

some always possible normalization of [P,Q], see [8, Prop. 3.2]. The normalization consists
of premultiplication of [P,Q] with some V ∈ Glp(R[s, z1, z

−1
1 ]). Due to bijectivity of the shift

operator z1 on A, this does not change kerA[P,Q].
Hence, in this special case too, the full row rank assumption on [P,Q] is no restriction. It re-
mains an open question whether this is true for the case of incommensurate delays as well, see
[28, p. 234].
Although it is well known that in general realization of behaviors is not identical to realiza-
tion of transfer functions, we want to illustrate this fact by the following trivial example with
commensurate delays.

kerA[z1 − 1,− d
dt ] =

{„
u
y

«
∈ A2

∣∣∣ ∃x ∈ A : ẋ = (z1 − 1)u, y = x
}

)
{„

u
y

«
∈ A2

∣∣∣ ∃x ∈ A : ẋ = u, y = (z1 − 1)x
}

(note that (u, y)T = (0, 1)T is contained in the first but not in the second external behavior).
Both first order systems have transfer function z1−1

s .
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c) (Multidimensional Systems) In the multidimensional case of Exp. 2.3, the restriction to behaviors
with a full row rank kernel representation is indeed crucial as can be seen from the following
example. Let ∂

∂xi
= ∂i and K[z, s] = C[∂1, ∂2, ∂3] act on A = C∞(R3, C) as in 2.3, especially

s = ∂3 is the distinguished variable. It is easy to see that

kerC[∂1,∂2,∂3]

[
0 ∂2 −∂1 ∂3

1 0 0 1

]
= im C[∂1,∂2,∂3]


∂2 −∂1 0
∂3 0 ∂1

0 ∂3 ∂2

−∂2 ∂1 0

 .

Thus, property (1) of 2.3 implies

imA


0 1
∂2 0
−∂1 0
∂3 1

 = kerA

 ∂2 ∂3 0 −∂2

−∂1 0 ∂3 ∂1

0 ∂1 ∂2 0


and from this one obtains the realization

kerAM := kerA

 ∂2 ∂3 0
−∂1 0 ∂3

0 ∂1 ∂2

 =

 0 1
∂2 0
−∂1 0

 kerA[∂3, 1] = Bext

(
0,−1,

[
∂2

−∂1

]
,

[
0
0

])

If kerAM had a full row rank kernel representation, say kerAM = kerA M̂ with M̂ ∈
C[∂1, ∂2, ∂3]2×3, property (3) of 2.3 would imply that im C[∂1,∂2,∂3]M

T = im C[∂1,∂2,∂3]M̂
T is a

free module. But this is certainly not the case. Hence there exist behaviors which do admit
realizations in the sense of Def. 2.7, but which do not have a full row rank kernel representation.
Behaviors of this type are excluded from our construction.
However, it will be seen in Exp. 4.3 that each behavior Bext(A,B, C, D) with the sizes as in
Def. 2.7 does have kernel representation of rank p. As a consequence, (2.5) implies rkR = p for
multidimensional systems, too.

3 The realization procedure of Fuhrmann

We will now establish Fuhrmann’s realization in the setting introduced in the previous section.
Thus, throughout the construction, K[z, s] = K[z1, . . . , zl, s] is a polynomial ring in l + 1 inde-
terminates acting on a nonzero divisible K[z, s]-module A. The algebraic independence of the
operators z1, . . . , zl, and s will be crucial as it enables us to apply the Theorem of Quillen/Suslin.
The divisibility will be needed to eliminate the latent variable of a first-order realization.

Let us first fix some notations.

Definition 3.1

a) With K[z]((s−1)) := {
∑N

i=−∞ fis
i |N ∈ Z, fi ∈ K[z]} we denote the ring of formal Laurent-series

in s−1 with coefficients in the polynomial ring K[z]. This ring contains the ring K[z][[s−1]] of
formal power series in s−1 as well as the polynomial ring K[z, s].

b) For a matrix F =
∑N

i=−∞ Fis
i ∈ K[z]((s−1))p×k with Fi ∈ K[z]p×k and FN 6= 0 we write

deg F := N for the degree of F with respect to s.
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c) An element F ∈ K[z]((s−1))p×k is called proper (resp. strictly proper) if deg F ≤ 0 (resp.
deg F < 0). Hence F is (strictly) proper iff all its entries are (strictly) proper.

d) Define the maps Π− and Π+ as the projections onto the strictly proper part and polynomial
part respectively, that is

Π− : K[z]((s−1))p×k −→ K[z]((s−1))p×k Π+ : K[z]((s−1))p×k −→ K[z]((s−1))p×k

N∑
i=−∞

Fis
i 7−→

−1∑
i=−∞

Fis
i

N∑
i=−∞

Fis
i 7−→

N∑
i=0

Fis
i

Note that Π+ = id−Π−.

e) A non-zero element f =
∑N

i=−∞ fis
i ∈ K[z]((s−1)) is called monic, if its highest coefficient is a

non-zero constant, i. e. if fN ∈ K\{0}.

The starting point for the construction will be a matrix

[P,Q] ∈ K[z, s]p×(m+p) with detQ being monic and Q−1P being strictly proper. (3.1)

As we saw in Exp. 2.10, the restriction to full row rank matrices [P,Q] is not crucial in the case of
transfer functions and delay-differential systems with commensurate delays. The condition det Q
being monic is necessary for the specific construction to work. Whether this condition is necessary
in general for realizability of kerA[P,Q] will be discussed in the last section. The restriction to
strictly proper transfer matrices instead of only proper ones will hold notations simple. The proper
case can be derived easily by use of the equivalence

kerA[P,Q] = Bext(A,B, C, D) ⇐⇒ kerA[P + QD, Q] = Bext(A,B, C, 0).

On the conditions (3.1) we will show that the classical construction of Fuhrmann constitutes indeed
a realization in the behavioral sense of Def. 2.7. This is not a priori clear, since the Fuhrmann-
realization gives a polynomial model (A,B, C, D) ∈ K[z]n

2+nm+pn+pm for the transfer function
identity −Q−1P = C(sI − A)−1B + D. As we saw in Exp. 2.10.a), the transfer function identity
can be viewed as a behavioral one in the special case A = K(z, s). It is quite amazing that there is
only little extra work to do for showing that the construction leads also to a behavioral realization
for arbitrary nonzero divisible modules A.

The first step of the Fuhrmann-realization of [P,Q] is the construction of an abstract “state-
module”, this terminus to be understood in the language of systems over rings. This space is going
to be a K[z]-module depending only on the matrix Q. Define the map

ΠQ : K[z, s]p −→ K[z, s]p

f 7−→ QΠ−(Q−1f)

Note that the monicity of detQ guarantees that Q−1 ∈ K[z]((s−1))p×p. Especially, ΠQ(f) =
f−QΠ+(Q−1f) is indeed in K[z, s]p. Obviously, ΠQ is a K[z]-linear map satisfying ΠQ ◦ΠQ = ΠQ,
whence a projection.

Theorem 3.2 Let [P,Q] be as in (3.1). Define the K[z]-module SQ := im ΠQ ⊆ K[z, s]p. Then
SQ satisfies the following properties.

a) SQ = {f ∈ K[z, s]p |Q−1f is strictly proper},
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b) SQ = span K[z]{ΠQ(eis
j) | i = 1, . . . , p, j = 0, . . . ,deg detQ − 1}, where e1, . . . , ep are the stan-

dard basis vectors of K[z]p,
c) K[z, s]p = kerΠQ ⊕ SQ = QK[z, s]p ⊕ SQ,

d) SQ is a free K[z]-module with rank SQ = deg det Q.

The parts a) – c) can also be found in [14]. Part d) is the main step for the procedure, since a free
state module allows matrix representations for linear operators.

Proof: a) is obvious.
b) Let f ∈ K[z, s]p. We can conduct long division by det Q and get an expression f = f1 det Q+ g1

with f1, g1 ∈ K[z, s]p and deg g1 < deg detQ. Then

ΠQ(f) = QΠ−
(
adj (Q)f1 + Q−1g1

)
= QΠ−(Q−1g1) = ΠQ(g1),

hence SQ = {ΠQ(g) | g ∈ K[z, s]p, deg g < deg detQ}, which yields b).
c) The first equality holding true in general for projections, it remains to prove kerΠQ = QK[z, s]p.
The inclusion “⊇” follows directly from the definition of ΠQ. For “⊆” let f ∈ K[z, s]p with
ΠQ(f) = 0. Then 0 = Q(id − Π+)(Q−1f) = f −QΠ+(Q−1f), which shows that f = QΠ+(Q−1f)
is contained in QK[z, s]p.
d) By b) and c) the K[z]-module SQ is finitely generated and projective. Hence the Theorem of
Quillen/Suslin states that SQ is also a free K[z]-module, see [16, p. 492].
Let {g1, . . . , gn} ⊆ K[z, s]p be a basis of SQ. In order to show that n = deg det Q, we will use the
results about the Fuhrmann-realization over fields, in this case over the field K(z). Thus consider
the projection

Π̂Q : K(z)[s]p −→ K(z)[s]p

f 7−→ QΠ−(Q−1f)

where, of course, Π− is used for the projection onto the strictly proper part in K(z)((s−1))p as well.
Put

ŜQ := im Π̂Q ⊆ K(z)[s]p. (3.2)

Denote by Q̄ = diag(q1, . . . , qp) ∈ K(z)[s]p×p the Smith-form of Q over K(z)[s]. As in part a) of
this theorem it is

ŜQ̄ = {f ∈ K(z)[s]p | Q̄−1f strictly proper}
= {(f1, . . . , fp)T ∈ K(z)[s]p | deg fi < deg qi, i = 1, . . . , p}.

Since [5, Thm. 4.11] or direct calculations tell us that ŜQ̄ and ŜQ are isomorphic K(z)-vector
spaces, we obtain dimK(z) ŜQ =

∑p
i=1 deg qi = deg det Q. On the other side, the K(z)-linearity of

Π̂Q implies ŜQ = span K(z){g1, . . . , gn}. Indeed, if g = Π̂Q(f) with f = h−1f̄ , f̄ ∈ K[z, s]p and
h ∈ K[z]\{0}, then g = h−1Π̂Q(f̄) = h−1ΠQ(f̄) = h−1ḡ with some ḡ ∈ SQ.
Together with the linear independence of g1, . . . , gn over K(z), this amounts to

rank SQ = n = dimK(z) ŜQ = deg det Q. 2

Now we are able to establish the Fuhrmann-realization.
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Theorem 3.3 Let [P,Q] be as in (3.1) with deg detQ = n.
Define the K[z]-linear maps

Â : SQ −→ SQ B̂ : K[z]m −→ SQ Ĉ : SQ −→ K[z]p

f 7−→ ΠQ(sf) ξ 7−→ −Pξ f 7−→ Π+(Q−1sf)

Fix a basis f1, . . . , fn ∈ K[z, s]p of SQ and let A ∈ K[z]n×n, B ∈ K[z]n×m, and C ∈ K[z]p×n be

the matrix representations of Â, B̂, and Ĉ with respect to the chosen basis of SQ and the standard
bases of K[z]m and K[z]p. Then

Bext(A,B, C, 0) = kerA[P,Q]

for any non-zero divisible K[z, s]-module A.
Furthermore, the realization is coreachable in the sense of systems over the ring K[z], that is[

sI −A
C

]
is left-invertible over K[z, s].

Proof: First of all, one should note that by the strict properness of Q−1P the image of the map
B̂ is in fact contained in SQ, see Thm. 3.2.a). Furthermore, by definition of SQ the vector Q−1sf

is proper. Hence, Ĉ(f) is simply the constant part of Q−1sf and indeed in K[z]p.
From the proof of Thm. 3.2.d) we know that f1, . . . , fn is a basis of the K(z)-vector space ŜQ

in (3.2) as well. Hence the triple (A,B, C) regarded as matrices over K(z) constitutes also the
Fuhrmann-realization of [P,Q] ∈ K(z)[s]p×(m+p) and [5, Thm. 10.1] tells us that

C(sI −A)−1B = −Q−1P. (3.3)

Next, put X = −[f1, . . . , fn] ∈ K[z, s]p×n. By Thm. 3.2.c) it is K[z, s]p = [X, Q]K[z, s]n+p, which
implies that

[X, Q] is right-invertible over K[z, s]. (3.4)

As for the first statement of the theorem, let us consider the matrices A, B, and C. The choice of
the bases for the modules involved imply the relations

XA = QΠ−(Q−1sX) and C = −Π+(Q−1sX),

hence

X(sI −A) = sX −QΠ−(Q−1sX) = Q(id−Π−)(Q−1sX) = QΠ+(Q−1sX) = −QC. (3.5)

Thus X = −QC(sI −A)−1 and Prop. 2.9.b) together with (3.3) and (3.4) yields the desired result.

To prove the coreachability, the following notation is helpful. For an arbitrary matrix M ∈
K(z, s)α×β let M

(β1,...,βp)

(α1,...,αp)
be the p×p-minor given by the columns β1, . . . , βp and the rows α1, . . . , αp.

Equation (3.5) can be written as

[X, Q]
[
sI −A

C

]
= 0. (3.6)

Regarding this as an equation of matrices over the field K(z, s), one obtains from [11, p. 294] the
existence of non-zero coprime elements a, b ∈ K[z, s] so that

[X, Q]
(i1,...,ip)

(1,...,p)
= ±a

b

[
sI −A

C

](1,...,n)

(i∗1,...,i∗n)

(3.7)
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for all 1 ≤ i1 < . . . < ip ≤ n + p and 1 ≤ i∗1 < . . . < i∗n ≤ n + p with {i1, . . . , ip} ∪ {i∗1, . . . , i∗n} =
{1, . . . , n + p}. The coprimeness of the full size minors of [X, Q] implies at once a ∈ K\{0}. But
then b ∈ K\{0} can be deduced from the equation deg detQ = n = deg det(sI − A) and the

monicity of detQ. Thus the full size minors of
»
sI −A

C

–
coincide (up to a minus sign and a non-zero

constant) with those of [X, Q] and the result follows from (3.4). 2

We illustrate the procedure by the following example.

Example 3.4 Consider again delay-differential equations with commensurate point-delays only.
Thus, let R[z1, s] act on A = C∞(R, R) with z1f(t) = f(t− 1) and sf = ḟ . Let

[P,Q] =
[
z1 − 1 (z1 − 1)s2 s

0 (z1 − 1)2s + s z1 − 1

]
∈ R[z1, s]2×3.

Then det Q = −s2 is monic and Q−1P = −s−2
»

(z1 − 1)2

−(z1 − 1)3s− (z1 − 1)s

–
is strictly proper. From

Thm. 3.2.b) we know that

SQ = span R[z1]

{
ΠQ

(
1
0

)
,ΠQ

(
0
1

)
,ΠQ

(
s
0

)
,ΠQ

(
0
s

) }
.

One calculates

ΠQ

( [
1 0 s 0
0 1 0 s

])
=

[
1 (z1 − 1)s −(z1 − 1)2s 0
0 (z1 − 1)2 + 1 −(z1 − 1)3 − (z1 − 1) 0

]
.

Therefore, f1 :=
„

1
0

«
, f2 :=

„
(z1 − 1)s

(z1 − 1)2 + 1

«
form a basis of SQ and

ΠQ([sf1, sf2]) = [−(z1 − 1)f2, 0], −P = (1− z1)f1, Q−1[sf1, sf2] =
−1
s

[
z1 − 1 −s

−(z1 − 1)2s− s 0

]
.

Use of Thm. 3.3 leads to the first-order system

sx =
[

0 0
1− z1 0

]
x +

[
1− z1

0

]
u, y =

[
0 1

(z1 − 1)2 + 1 0

]
x

as a realization for kerA[P,Q]. This can also be verified by some straightforward calculations.

4 Some results about realizability and minimality

For the realization procedure of the previous section we needed the assumptions that [P,Q] is of
full row rank and det Q is monic, see (3.1). In this final section we will discuss whether this last
condition is necessary for realizability of [P,Q] in the sense of Def. 2.7. The answer depends on
the specific choice of the systems class, i. e. of the module A and the operators acting on it.
Furthermore, in special cases it will be seen that the Fuhrmann realization is minimal with respect
to the dimension of the state module.

Let us first investigate the case A = K(z, s).
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Example 4.1 As we saw in Exp. 2.10.a), for A = K(z, s) or A = K(z)((s−1)) realizability in
the sense of Def. 2.7 implies the existence of a full row rank kernel representation [P,Q] with
non-singular Q. From Prop. 2.9.a) we obtain Q−1P ∈ K[z][[s−1]]p×m. Hence, in this case, the
classical realization procedures of i/o-operators over rings apply much better than the Fuhrmann-
construction, for an overview see e. g. [1, ch. 4] and [13] and the references therein. In particular,
realizability is simply characterized by the property Q−1P ∈ K[z][[s−1]]p×m (see [1, Theorems 4.13
and 4.14]) and non-singular left factors of [P,Q] don’t matter, i. e.

kerA[P,Q] = kerA U [P,Q] for all non-singular U ∈ K(z, s)p×p.

Hence the monicity of det Q as needed for the Fuhrmann construction is not necessary for realiz-
ability. The following simple example illustrates this.

kerA

[
z1 0 −s
0 z1 z2

]
=

{(
u
y

)
∈ A3

∣∣∣∣ ∃ x ∈ A : sx = u, y =
[
−z2

z1

]
x

}
.

Note that the realization is canonical and absolutely minimal in the sense of [20]. One can show by
some straightforward calculations that it is not possible to find a polynomial kernel representation
U [P,Q] ∈ K[z, s]2×3 with a non-singular U such that det(UQ) is monic and of degree 1.

Let us now switch to the case of delay-differential systems with commensurate delays.

Example 4.2 Choose A = C∞(R, R) and K[z, s] = R[z1, s] as in Exp. 3.4. It has been sketched in
Exp. 2.10.b) that realizability implies rk [P,Q] = p and, after some normalization, detQ is monic.
Hence the necessity of (3.1). In this special case, one even has a stronger property of the Fuhrmann-
realization: it is minimal with respect to the dimension of the state-module (or, in the terminology
of behaviors, the number of latent variables). This is a consequence of [8, Prop. 4.3 (iii)]. No results
of this type are known for differential systems with noncommensurate delays.

However, even in the case of commensurate delays, the results for systems over fields are not
completely generalizable. The following simple example shows that the Fuhrmann realization,
although minimal, is not unique up to similarity as a system over whatsoever ring. Let b ∈ R[z1]
be arbitrary. The construction of the previous section produces the following realizations

kerA

[
b(z1) s2 − z1 + 2 −1

0 0 s

]
= Bext

0 z1 − 2 1
1 0 0
0 0 0

 ,

−b(z1)
0
0

 ,

[
0 1 0
0 0 1

]
, 0


= Bext(A1, B1, C1, 0)

kerA

[
b(z1) s2 − z1 + 2 −z1

0 0 s

]
= Bext

0 z1 − 2 z1

1 0 0
0 0 0

 ,

−b(z1)
0
0

 ,

[
0 1 0
0 0 1

]
, 0


= Bext(A2, B2, C2, 0)

Since ẏ2 = 0 implies z1y2 = y2, the above behaviors are in fact the same. One can check by
straightforward calculations that there exists no non-singular 2× 2-matrix T so that

(A2, B2, C2) = (TA1T
−1, TB1, C1T

−1).

Finally we reconsider the class of multidimensional systems studied in [18].
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Example 4.3 Let K[z, s] and A be any of the cases in Exp. 2.3. We will show that equation (2.5)
implies for R = [P,Q]
i) rk [P,Q] = p,
ii) det Q is monic,
iii) the Fuhrmann-realization is minimal with respect to the number of latent variables,
hence the requirements of (3.1) are necessary for realizability if one starts with a kernel represen-
tation consisting of p equations.
Let (2.5) be valid with all matrices of the sizes as given in Def. 2.7.

i) We show that Bext(A,B, C, D) always admits a kernel representation of rank p and with l ≥ p
equations. Using property (3) of 2.3 this will imply rk [P,Q] = p. To do so, let

M :=

sI −A −B
0 Im

C D


and

kerK[z,s] M
T = im K[z,s][Ŷ , P̂ , Q̂]T (4.1)

with some [Ŷ , P̂ , Q̂] ∈ K[z, s]l×(n+m+p). Then l ≥ p and rk [Ŷ , P̂ , Q̂] = p. Elementary transforma-
tions over K(z, s) show even rk [P̂ , Q̂] = p. Property (1) of 2.3 yields kerA[Ŷ , P̂ , Q̂] = imAM and
hence with (2.5)

kerA[P,Q] =
[

0 I
C D

]
kerA[sI −A,−B] =

{(
u
y

)
∈ Am+p

∣∣∣∣∣
0

u
y

 ∈ imAM

}
= kerA[P̂ , Q̂].

Now (3) of 2.3 implies
[P̂ , Q̂] = W [P,Q] for some W ∈ K[z, s]l×p, (4.2)

and therefore rk [P,Q] = p.

ii) & iii) First we show that
kerK[z,s] M

T = im K[z,s][Y, P, Q]T (4.3)

with some Y ∈ K[z, s]p×n; that is, kerK[z,s] M
T is a free module. This will allow, similarly to the

proof of Thm. 3.3, to establish monicity of det Q and minimality of the realization. Equation (4.3),
of course, is a special situation due to the sizes of the matrices involved. To establish (4.3), we use
Prop. 2.9.a) and obtain the non-singularity of Q as well as −Q−1P = C(sI−A)−1B+D. Moreover,
choosing u = 0 in (2.5) shows that kerA(sI −A) ⊆ kerAQC. Therefore, again, (3) of 2.3 leads to a
matrix Y ∈ K[z, s]p×n such that Y (sI−A) = −QC. This altogether results in the matrix equation
[Y, P, Q]M = 0, hence “⊇” of (4.3). As for “⊆” let a ∈ K[z, s]n+m+p with MTa = 0. Then (4.1)
and (4.2) yield a = [Ŷ , P̂ , Q̂]Tv = [Y, P, Q]TWTv ∈ im K[z,s][Y, P, Q]T for some v ∈ K[z, s]l.
From (4.3) we may conclude that [Y, P, Q] is minor-prime, see [23, Thm. 3.3.8], that is, the full size
minors are coprime in K[z, s]. Along the same line of arguments as in (3.6) and (3.7), one obtains
from [Y, P, Q]M = 0 a relation b det Q = det(sI − A) with some b ∈ K[z, s]. Thus, det Q is monic
and the dimension of each realization is at least deg det Q. This shows ii) and iii).
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5 Conclusion

In this paper we showed that the polynomial model of Fuhrmann provides a first-order behavioral
realization for quite a general class of multi-operator systems. Only in special cases the minimality
of the Fuhrmann realization can be proven. Even in these cases the question about uniqueness of
minimal realizations appears to be quite difficult to answer.
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[7] H. Glüsing-Lüerßen. A behavioral approach to delay differential equations. SIAM J. Contr.
& Opt., 35:480–499, 1997.
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