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Abstract—Maximum-distance separable (MDS) convolutional codes are
characterized through the property that the free distance attains the gener-
alized Singleton bound. The existence of MDS convolutional codes was es-
tablished by two of the authors by using methods from algebraic geometry.
This correspondence provides an elementary construction of MDS convo-
lutional codes for each rate and each degree . The construction is
based on a well-known connection between quasi-cyclic codes and convo-
lutional codes.

Index Terms—Convolutional codes, generalized Singleton bound, max-
imum-distance separable (MDS) convolutional codes.

I. INTRODUCTION

The free distance of a ratek=n convolutional code of degree� is
always upper-bounded by the generalized Singleton bound

dfree � (n� k)(b�=kc+ 1) + � + 1 (1.1)

see [1]. We will provide an alternative proof of this result in the next
section. If� = 0, i.e., in the case of block codes, (1.1) simply reduces
to the well-known Singleton bound

dfree � n� k + 1 (1.2)

cf. [2, Ch. 1, Theorem 11]. The authors of [1] showed the existence
of ratek=n convolutional codes of degree� whose free distance was
equal to the generalized Singleton bound (1.1) and they called such
codes maximum-distance separable (MDS) convolutional codes. The
existence was established in [1] by techniques from algebraic geometry
without giving an explicit construction. This correspondence is based
on ideas from Justesen [3] and it provides an explicit construction of
MDS convolutional codes for each ratek=n and each degree�. The
construction itself uses a well-known connection between quasi-cyclic
codes and convolutional codes which has been worked out by several
authors [3]–[6].

The correspondence is structured as follows. In the remainder of this
section we introduce the basic notions which will be needed throughout
the correspondence. In Section II, we give a new derivation of the gen-
eralized Singleton bound (1.1). The main new results will be given in
Section III.

Let be a finite field, [D] the polynomial ring, and (D) the field
of rational functions. LetG(D) be ak�n matrix over the polynomial
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ring [D], with rankG(D) = k. For the purpose of this correspon-
dence, we define the ratek=n convolutional code generated byG(D)
as the set

C = fu(D)G(D) 2 n(D)ju(D) 2 k(D)g

and say thatG(D) is a generator matrixfor the convolutional code
C. If the generator matricesG(D) andG0(D) both generate the same
convolutional codeC then there exists ak� k invertible matrixU(D)
with G0(D) = U(D)G(D) and we sayG(D) andG0(D) are equiva-
lent encoders.

Because of this, we can assume without loss of generality that the
codeC is presented by aminimal basic encoderG(D). For this, let
�i be theith-row degree ofG(D), i.e.,�i = maxj deg gij(D). In the
literature [7], the indexes�i are also called theconstraint length for the
ith input of the matrixG(D). Then one defines the following.

Definition 1.1: A polynomial generator matrixG(D) is calledbasic
if it has a polynomial right inverse. It is calledminimal if k

i=1
�i

attains the minimal value among all generator matrices ofC.

A basic generator matrix is automaticallynoncatastrophic, this
means finite-weight codewords can only be produced from fi-
nite-weight messages. IfG(D) is a minimal basic encoder one defines
the degree[8] of C as the number� := k

i=1
�i. In the literature,

the degree� is sometimes also called thetotal memory[9] or the
overall constraint length[7] or the complexity[10] of the minimal
basic generator matrixG(D), a number dependent only onC. Among
all these equivalent expressions we like the term degree best since
it relates naturally to equal objects appearing in systems theory and
algebraic geometry. The following remarks explain this notion.

Remark 1.2: It has been shown by Forney [11] that the set
f�1; . . . ; �kg of row degrees is the same for all minimal basic
encoders ofC. Because of this reason, McEliece [8] calls these indexes
the Forney indexes of the codeC. These indexes are also the same as
the Kronecker indexes of the row module

M = fu(D)G(D) 2 n[D]ju(D) 2 k[D]g

whenG(D) is a basic encoder. The Pontryagin dual ofM defines a
linear time-invariant behavior in the sense of Willems [12], [13], i.e., a
linear system. Under this identification, the Kronecker indexes ofM
correspond to the observability indexes of the linear system [14]. The
sum of the observability indexes is equal to the McMillan degree of
the system. Finally,M defines in a natural way a quotient sheaf [15]
over the projective line and, in this context, one refers to the indexes
f�1; . . . ; �kg as the Grothendieck indexes of the quotient sheaf and
� = k

i=1
�i as the degree of the quotient sheaf.

We feel that the degree is the single most important code parameter
on the side of the transmission ratek=n. In the sequel, we will adopt
the notation used by McEliece [8, p. 1082] and denote by(n; k; �) a
ratek=n convolutional code of degree�.

For anyn-component vectorv 2 n, we define its weightwt (v) as
the number of all its nonzero components. The weightwt (v(D)) of a
vectorv(D) 2 n(D) is then the sum of the weights of all itsn-co-
efficients. Finally, we define thefree distanceof the convolutional code
C � n(D) through

dfree = minfwt (v(D))jv(D) 2 C; v(D) 6= 0g: (1.3)

It is an easy but crucial observation that in case we are given a basic
encoderG(D) the free distance can also be obtained as

dfree = minfwt (v(D))jv(D) 2M; v(D) 6= 0g:

0018–9448/01$10.00 © 2001 IEEE
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This follows simply from the fact that, ifG(D) has a polynomial right
inverse, a nonpolynomial messageu(D) would result in a nonpolyno-
mial codewordv(D), which, of course, has infinite weight.

In the sequel, we wish to link the free distance to two types of dis-
tances known from the literature. Following the approach in [16], [7]
we shall define the column distancesdcj and the row distancesdrj . In
order to do so let us suppose

G(D) = G0 +G1D +G2D
2 + � � �+G� D�

is an encoder with row degrees�1 � � � � � �k. Denote by (1.4) the
semi-infinite sliding generator matrix, as shown at the bottom of the
page. Then the convolutional code can be defined as

C = f(u0; u1; . . . ; u
 ; . . .) �Gjuj 2
k; for j = 0; 1; . . .g:

Then thejth-order column distancedcj is defined as the minimum of
the weights of the truncated codewordsv[0; j] := (v0; v1; . . . ; vj) re-
sulting from an information sequenceu[0; j] := (u0; u1; . . . ; uj)with
u0 6= 0. Precisely, ifGc

j denotes thek(j+1)�n(j+1) upper-left sub-
matrix of the semi-infinite matrixG, thendcj = minu 6=0 wt(u[0; j] �
Gc

j): The quantitydc� is called theminimum distanceof the code and
the tupledppp = [dc0; d

c
1; . . . ; d

c
� ] is called thedistance profile. The

limit dc1 = limj!1 dcj exists and we have the relation

dc0 � dc1 � � � � � dc1:

Thendc1 is the minimal distance computed over all finite or infinite
codewords ofC. It is shown in [7] thatdc1 = dfree.

Thejth row distancedrj is defined as the minimum of the weights
of all the finite codewordsv[0; j+� ] := (v0; v1; . . . ; vj+� ) resulting
from an information sequenceu[0; j] := (u0; u1; . . . ; uj) 6= 0. Thus,
if we denote byGr

j thek(j+1)�n(j+ �k +1) upper-left submatrix
of the semi-infinite matrixG, thejth-row distance is

drj = min
u 6=0

wt(u[0; j] �G
r
j ): (1.5)

The limitdr1 = limj!1 drj exists and one has (see, e.g., [7]) for every
encoderG(D) the relation

dc0 � dc1 � � � � � dc1 = dfree � dr1 � � � � � dr1 � dr0: (1.6)

In terms of state-space descriptions [17], [14]dr1 is equal to the min-
imal weight of a nonzero trajectory which starts from and returns to
the all-zero state.dc1 is equal to the minimal weight of a nonzero tra-
jectory which starts from and not necessarily returns to the all-zero
state. Furthermore, if the generator matrixG(D) is minimal basic, then
dc1 = dr1 = dfree (see [17], [7] for details). It follows that for a basic
encoder the minimal-weight codewords are generated by finite infor-
mation sequences.

II. THE GENERALIZED SINGLETON BOUND

It is certainly a most natural question to ask how large the distance
of a ratek=n code of some bounded degree� can be. McEliece [8]
calls codes having the largest free distance among all(n; k; �) codes
distance optimal. Codes of degree� = 0 correspond to[n; k] linear
block codes and here we know that the distance cannot be larger than
the Singleton boundn � k + 1. In [1], it was shown that the free dis-
tance can never be larger than the generalized Singleton bound (1.1)
for an (n; k; �)-code. In the sequel we will give a new derivation of
this bound.

Once the row degrees�1; . . . ; �k of the minimal basic encoder
G(D) are specified one has a natural upper bound on the free distance
of a convolutional code. The following result was derived in [1].

Theorem 2.1:Let C be a ratek=n convolutional code generated by
a minimal-basic encoding matrixG(D). Let �1; . . . ; �k be the row
degrees ofG(D) and� = minf�1; . . . ; �kg denote the value of the
smallest row degree. Finally, let` be the number of indexes�i among
the indexes�1; . . . ; �k having the value�. Then the free distance must
satisfy

dfree � n(� + 1)� `+ 1: (2.1)

The proof given in [1] was based on the polynomial generator matrix
G(D). In the sequel, we provide a proof by means of the sliding matrix
G introduced in (1.4).

Proof: Without loss of generality, we may assume

� = �1 � � � � � �k:

Let G be the infinite sliding generator matrix associated toG(D) as
in (1.4). We will show that the bound (2.1) is actually a bound on the
0th row distancedr0 defined in (1.5),; in other words, we will show that
dr0 � n(� + 1) � ` + 1: From this, the claim follows using (1.6). To
prove the bound ondr0, we only need to look at the first block-row of
the sliding matrixG denoted by

Gr
0 = [G0 G1 � � � G� G� +1 � � � G� ]:

For all j = 0; . . . ; �k let G0j denote thè � n matrix formed by
the first ` rows of the matrixGj . All matricesG0� +1; . . . ; G

0
� are

zero. Hence the minimum distancedr0 of the[n(�k+1); k] block code
generated by[G0 G1 � � � G� G� +1 � � � G� ] is smaller than
the minimum distance of the[n(� + 1); `] block code generated by
G0

r
0 := [G00 G01 � � � G0� ], which is upper-bounded by the Singleton

boundn(�+1)� `+1. Therefore, we obtain the desired bound ondr0
and hence on the free distance

dfree = dr1 � � � � � dr2 � dr1 � dr0 � n(� + 1)� `+ 1:

Remark 2.2: It was pointed out to the authors by a referee that The-
orem 2.1 can also be derived from [8, Theorem 4.4] and [8, Corol-
lary 4.3].

In the case of a block code, i.e., when� = 0 and` = k, the upper
bound in (2.1) is identical to the Singleton bound (1.2).

It is easy to see that for givenn; k; and�, the upper bound (2.1) is
maximized if and only if� is as big as possible whilèis as small as
possible, which results in

� = b�=kc = �1 = � � � = �` < �`+1 =

� � � = �k = b�=kc + 1 = � + 1: (2.2)

We will call the above set of indexes thegeneric set of row degreesas
they are sometimes referred to in the systems literature.

Remark 2.3: McEliece [8, p. 1083] calls a codeC having the generic
set of row degreescompact. In systems theory, the set of row degrees
�1; . . . ; �k corresponds to theobservability indexesof the associated
(Pontryagin dual) linear system. (Compare with Remark 1.2 and [14]).
It is known that the set of all linear systems having a fixed input number
k, a fixed output numbern�k, and a fixed McMillan degree� has in a

G =

G0 G1 � � � G� G� +1 � � � G�

G0 G1 � � � G� G� +1 � � � G�

. . .
. . .

. . .
. . .

. . .

: (1.4)
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natural way the structure of a smooth projective variety [15]. The subset
of systems having the generic set of row degrees forms a Zariski open
subset of this variety, i.e., a generic set in the sense of algebraic geom-
etry. This explains why systems theorists call the indexes appearing in
(2.2) the generic set of row degrees.

Specializing the above result to the generic set of row degrees we get
the following upper bound in terms of the degree�.

Theorem 2.4:For every base field and every ratek=n convolu-
tional codeC of degree�, the free distance is bounded by

dfree � (n� k)(b�=kc + 1) + � + 1: (2.3)

The main result of [1] states.

Theorem 2.5:For any positive integersk < n; � and for any prime
p there exists a ratek=n convolutional codeC of degree� over a suffi-
ciently big field of characteristicp, whose free distance is equal to the
upper bound (2.3).

Based on Theorems 2.4 and 2.5 we introduce the following notions.

Definition 2.6: The upper bound (2.3) is called thegeneralized Sin-
gleton bound. A ratek=n code of degree� whose free distance achieves
the generalized Singleton bound is called anMDS convolutional code.

The proof of Theorem 2.5 given in [1] is nonconstructive and it
makes use of algebraic geometry. For some special set of ratesk=n
and degree�, e.g.,k = 1 [18] or k = � � 1 [19], constructions which
lead to MDS convolutional codes can be found in the literature. We are,
however, not aware of a construction in the general case.

The algebraic conditions used in [1] to describe the set of MDS con-
volutional codes were very involved and we do not know of a simple
algebraic criterion in general. For small parametersk; n and� it is,
however, often easy to decide if a particular code is MDS. The fol-
lowing example illustrates this.

Example 2.7: Consider the rate2=3 convolutional code over the
base field 3 defined through the encoding matrix

G(D) =
1 1 1

D + 1 D 2D+ 2
:

Here the row degrees are� = �1 = 0 and�2 = 1, ` = 1 and the total
degree is� = 1. �1; �2 form a generic set of row degrees and the upper
bounds in (2.1) and (2.3) are in this case both equal to3.

It follows thatG(D) is an MDS convolutional code if the free dis-
tance of this code is equal to3. One verifies that the 0th column distance
dc0 = 2 and the first column distance isdc1 = 3, the maximal possible.

It follows from Theorem 2.1 that MDS convolutional codes neces-
sarily have the generic set of row degrees as in (2.2). It is worth men-
tioning that within the class of all ratek=n codes with fixed degree�,
the distribution (2.2) of the row degrees leads to the smallest possible
memory.

The set of convolutional codes of ratek=n and degree� is subdi-
vided into codes whose encoding matricesG(D) have a fixed set of
row degrees�1; . . . ; �k with � = k

i=1 �i. In Theorem 2.1, we gave
an upper bound for the free distance for a code whose row degrees

are not necessarily the generic set of indexes. It is an open question
if there always exist convolutional codes having given row degrees
� = �1 � � � � � �k and free distance equal to the right-hand side
of (2.1).

We conclude the section with a simple theorem that tells us how to
obtain MDS convolutional codes of ratek0=n from MDS codes of rate
k=n wherek0 < k.

Theorem 2.8:Let C be a convolutional code of ratek=n generated
by the minimal-basic encoding matrixG(D) 2 [D]k�n with row
indexes

� = �1 = � � � = �` < �`+1 � � � � � �k; where` < k:

LetG(D) 2 [D](k�1)�n be the matrix obtained fromG(D) by omit-
ting any of the lastk � ` last rows ofG(D). If the free distance ofC
achieves the upper bound (2.1), then the same is true for the codeC
generated by the encoderG. In particular, ifC is an MDS code, then
so isC.

Proof: First note that noncatastrophicity as well as the full-rank
conditions carry over to the matrixG. Moreover, the codesC andC
both have the same minimal row degree� and the same number` of
rows having this degree�. Therefore, the upper bound (2.1) has the
same value for both codes and the theorem follows from the inclusion
C � C.

III. A C ONSTRUCTION OFRATE k=n MDS CONVOLUTIONAL CODES

In this section, we will provide a concrete construction of an
(n; k; �) MDS convolutional code for each degree� and each rate
k=n. The underlying idea here follows the lines of [3], [5] which is
an instance of the relationship between quasi-cyclic block codes and
convolutional codes. We will not go into the details of this connection,
rather refer the reader to [3], [4], [6].

As defined in [3], [5], a convolutional code is said to begenerated
by a polynomial

g(D) = g0(D
n) + g1(D

n)D+ � � �+ gn�1(D
n)Dn�1 (3.1)

if it has a polynomial encoder of the form (3.2) shown in at the bottom
of the page. It is immediate thatrankG(0) = k if g(0) = g0(0) 6= 0.

The code

C = f(u0(D); . . . ; uk�1(D)) �G(D)j

(u0(D); . . . ; uk�1(D)) 2 k[D]g

is isomorphic to

f(u0(D
n) + u1(D

n)D+ � � �+ uk�1(D
n)Dk�1) � g(D)g (3.3)

the isomorphism is simply multiplexing and, therefore, weight-pre-
serving. We will not use the description (3.3) but rather the encoder
matrix in (3.2).

The following theorem will lead us to the construction of MDS con-
volutional codes. Recall that two elementsa; b 2 are calledn-equiv-
alent if an = bn.

Theorem 3.1 [3, Theorem 3]:Let p be a prime andr 2 . Let
g(D) 2 p [D] generate a cyclic code overp of lengthN relatively
prime top and of distancedg . Let n be any positive divisor ofN and

G(D) =

g0(D) g1(D) g2(D) � � � � � � � � � gn�1(D)

Dgn�1(D) g0(D) g1(D) � � � � � � � � � gn�2(D)

Dgn�2(D) Dgn�1(D) g0(D) � � � � � � � � � gn�3(D)
...

...
. . .

. . .
...

Dgn�k+1(D) Dgn�k+2(D) � � � Dgn�1(D) g0(D) � � � gn�k(D)

: (3.2)
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k < n. If g(D) has at mostn � k roots in eachn-equivalence class,
then the generator matrixG(D) defined in (3.2) is basic minimal and
describes ak=n convolutional code of free distancedfree � dg .

Now we are ready to construct MDS codes of any ratek=n and
any degree�. The idea is as follows. We will construct a polynomial
g(D) 2 p [D] of degreeN � K which generates a rate[N; K]
Reed–Solomon block code whose distance is equal to the Singleton
boundN �K +1. The parametersN andK will be chosen such that
njN anddg = (n� k)(b�=kc+1)+ �+1; which is the MDS bound
for the given parametersn; k; and� (see (2.3)). The polynomialg(D)
will satisfy the conditions of Theorem 3.1, thus we obtain the desired
MDS convolutional code.

To accomplish this the following technical lemma will be needed.

Lemma 3.2: Let p be a prime andk; n; � fixed positive integers
such thatp andn are relatively prime andk < n. Then there exist
positive integersr anda

a � b�=kc + 1 + �=(n� k) (3.4)

solving the Diophantine equation

an = pr � 1: (3.5)

Proof: Consider the multiplicative group( =n )� which has
order�(n). Since(p; n) = 1 we know thatpi�(n) � 1 mod n for all
i � 1. In particular,pi��(n) � 1 is divisible byn. Choosei such that
(3.4) is satisfied for

a :=
pi��(n) � 1

n
:

In the sequel, assume thata; r is a solution of (3.5) satisfying the
inequality (3.4). LetN = an and letK = N�(n�k)(b�=kc+1)��.
It is easily seen that0 < K < N . Let� 2 p be a primitive element
of p and define

g(D) = (D � �0)(D� �1) � � � (D � �N�K�1) 2 p [D]: (3.6)

The polynomialg(D) defines a rate[N; K]Reed–Solomon block code
with distance

dg = N �K + 1 = (n� k)(b�=kc+ 1) + � + 1

as desired.

Theorem 3.3:Let p; n; k and� be integers withk < n andn not
divisible byp. Then there exists an MDS convolutional code of ratek=n
and degree� over some suitably big field of characteristicp. Indeed, the
generator matrixG(D) in (3.2) induced by the polynomialg(D) given
in (3.6) defines an MDS convolutional code of ratek=n and degree�
over p .

Proof: First we show that the generator matrixG(D) is of degree
�. In order to do so, we calculate the degrees of the polynomialsgi(D)
in the expansion (3.1) ofg(D). First note that

deg g(D) = N �K = n� + n� `

where� = b�=kc and` = k(b�=kc+1)�� > 0. Sinceg(D) defines a
Reed–Solomon block code it follows that all its coefficient are nonzero
and one obtains

deg gi(D) = �; for i = 0; . . . ; n� `

deg gi(D) = � � 1; for i = n� `+ 1; . . . ; n� 1:

This implies that the row degrees ofG(D) are indeed as in (2.2) and
thatG(D) is minimal. Thus, the degree of the code generated byG(D)
is simply given by the sum of the row degrees, which is in fact

`� + (k � `)(� + 1) = k(b�=kc + 1)� ` = �:

Observe also thatrankG(0) = k.

Next we prove thatg satisfies the root condition given in Theorem
3.1. To do so, observe that then-equivalence class of�s, where0 �
s � a � 1, consists of

�s; �s+a; �s+2a; . . . ; �s+a(n�k�1); �s+a(n�k); . . . :

The form ofg(D) in (3.6) shows that each suchn-equivalence class
contains at mostn � k roots ofg(D) if N �K � (n � k)a. This is
indeed guaranteed by construction ofa in (3.4)

a � b�=kc + 1 +
�

n� k
=

N �K

n� k
: (3.7)

Now Theorem 3.1 implies that the encoderG(D) given in (3.2) is min-
imal-basic and generates an MDS code with the given parametersn; k;
and�.

Remark 3.4: The above proof is quite similar to the proof of [3,
Theorem 4]. Actually, Justesen’s Theorem 4 can be considered a spe-
cial case of the above, namely, the case whenK = ka. In the above
construction, we have more generallyK � ka, see (3.7). The case
K = ka can occur only if(n� k)j�, which we did not require.

It is interesting to study the constructed convolutional code via the
semi-infinite sliding generator matrix as introduced in (1.4). To do so
we expand the generator polynomialg(D) in terms of its coefficients

g(D) = c0 + c1D + � � �+ cN�KD
N�K:

The[N; K] Reed–Solomon block code generated byg(D) has a gen-
erator matrix of the form

G =

c0 c1 � � � cN�K

c0 c1 � � � cN�K

. . .
. . .

. . .

c0 c1 � � � cN�K

: (3.8)

A direct calculation now shows that the firstk rows of the matrixG
appear as the upper-left corner of the matrixG in (1.4), where, again,
the matrixG(D) is as in (3.2). Thereafter, rowsjn + 1; . . . ; jn + k
of G correspond to rowsjk + 1; . . . ; (j + 1)k of G expressing the
polynomial description (3.3). IfG was an infinite sliding-block matrix
it would trivially follow that the convolutional codeG(D) has free
distancedfree � N�K+1. Theorem 3.1 of Justesen and in particular
the “weight retaining property” as studied by Massey, Costello, and
Justesen [5] guarantee that the distance estimate holds for the semi-
infinite sliding generator matrixG.

Remark 3.5: We formulated Theorem 3.3 with a prescribed char-
acteristicp of the field over which we construct the MDS convolu-
tional code. If one is interested in the smallest possible field where this
construction works, regardless of characteristic, one should, of course,
choosea to be the smallest integer such thata � b�=kc+1+�=(n�k)
andan+ 1 is a prime power. In any case, it follows immediately from
(3.4) and (3.5) that the field size is the smallest possible prime power
q for which

nj(q � 1) and q � �
n2

k(n� k)
+ 2: (3.9)

We close this section with a few examples.

Example 3.6: Suppose we want to construct a(3; 2; 5) MDS con-
volutional code. The MDS bound is in this case9 and from (3.9) we
need the smallest prime powerpr bigger than24, such thatpr � 1 is
divisible by3. The smallest possible field is5 and we will need a
rate[24; 16] Reed–Solomon code for the construction.
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G(D) =
�28 + �35D + �57D2 1 + �6D + �42D2 �8 + �26D +D2

�8D + �26D2 +D3 �28 + �35D + �57D2 1 + �6D + �42D2
:

If we want however an MDS code in characteristic2, the smallest
field is 2 , and we need a rate[63; 55] Reed–Solomon code. Using,
e.g., MAPLE, one calculates

g(D) =

7

i=0

(D � �i)

=D8 + �42D7 + �57D6 + �26D5 + �6D4 + �35D3

+ �8D2 +D + �28

=(�28 + �35D3 + �57D6) +D(1 + �6D3 + �42D6)

+D2(�8 + �26D3 +D6)

where� is a primitive of 2 . Hence, an encoder for a(3; 2; 5) MDS
convolutional code is given by the equation at the top of the page.

Example 3.7: Another example that we give is a(5; 2; 12) MDS
convolutional code. The MDS bound is5(6+1)� 2+1 = 34 and, as
before, we will need the smallest prime powerpr bigger than55, such
thatpr � 1 is divisible by5. The smallest possible field is61 and we
need a[60; 27] Reed–Solomon code for the construction.

If we want to have the construction over a field of characteristic2 we
will have to takea = 51 in (3.5) which makesN = q� 1 = 28� 1 =
255. The Reed–Solomon code that we use has parametersN = 255
andK = 222.

IV. CONCLUSION

In this correspondence, we constructed MDS convolutional codes
for each ratek=n and for each code of degree�. The construction was
based on the construction of a large Reed–Solomon block code and
because of this the obtained convolutional code is closely related to
this Reed–Solomon code. The correspondence raises several follow-up
questions. Is it possible to come up with an independent construction
which does not require the relative primeness of the characteristicp and
the lengthn of the code, and/or which does not need such large field
sizes? Is it possible to carry through some subfield constructions and is
it possible to come up with an algebraic decoding algorithm? Finally,
it would be interesting to understand MDS convolutional codes from
the point of view of state dynamics. Some answers in these directions
were given in [17], [20] but more research is needed.
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