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Constructions of MDS-Convolutional Codes ring F[D], with rank G(D) = k. For the purpose of this correspon-
dence, we define the ratg'n convolutional code generated ¥ D)
Roxana Smarandach8&tudent Member, IEEE as the set
Heide Gluesing-Luerssen, and
Joachim RosenthaSenior Member, IEEE ¢ ={u(D)G(D) € F"(D)|u(D) € F*(D)}

and say thatz(D) is a generator matrixfor the convolutional code
2 : ' !
Abstract—Maximum-distance separable (MDS) convolutional codes are €- If the generator matriceS(D) a_ndG (D) _both generate the same
characterized through the property that the free distance attains the gener- convolutional cod€ then there exists & x & invertible matrixU (D)

alized Singleton bound. The existence of MDS convolutional codes was es-with G' (D) = U(D)G(D) and we say7(D) andG’' (D) are equiva-
tablished by two of the authors by using methods from algebraic geometry. |ant encoders.

This correspondence provides an elementary construction of MDS convo- Because of this. we can assume without loss of generality that the
lutional codes for each ratek /n and each degrees. The construction is ’ 9 Yy

based on a well-known connection between quasi-cyclic codes and convo-c0deC is presented by aninimal basic encode€/(D). For this, let

lutional codes. v; be theith-row degree ofZ(D), i.e.,v; = max; deg g;;(D). In the
Index Terms—Convolutional codes, generalized Singleton bound, max- Iiter.ature [7], the inqexe& are also called theonstraint 'e“,gth forthe

imum-distance Separab]e (MDS) convolutional codes. ith Input of the mat”XG(D). Then one defines the f0||OWIng.

Definition 1.1: A polynomial generator matri&'( D) is calledbasic
|. INTRODUCTION if it has a polynomial right inverse. It is callesiinimal if 3°%_, »;

) ) _ attains the minimal value among all generator matrices. of
The free distance of a rate/n convolutional code of degregis

always upper-bounded by the generalized Singleton bound A basic generator matrix is automaticalhyoncatastrophig this
means finite-weight codewords can only be produced from fi-
diree < (n —K)([6/k]+1)+6+1 (1.1) nite-weight messages.®(D) is a minimal basic encoder one defines

the degree[8] of C as the numbef := Zle v;. In the literature,

see [1]. We will provide an alternative proof of this result in the nexhe degrees is sometimes also called thetal memory[9] or the
section. If6 = 0, i.e., in the case of block codes, (1.1) simply reducegyerall constraint lengtH7] or the complexity[10] of the minimal

to the well-known Singleton bound basic generator matri& (D), a number dependent only 6n Among

all these equivalent expressions we like the term degree best since
it relates naturally to equal objects appearing in systems theory and
ebraic geometry. The following remarks explain this notion.

diree <n—k+1 (1.2)

cf. [2, Ch. 1, Theorem 11]. The authors of [1] showed the existengde'g
of ratek/n convolutional codes of degréewhose free distance was Remark 1.2:1t has been shown by Forney [11] that the set
equal to the generalized Singleton bound (1.1) and they called syeh, ..., v} of row degrees is the same for all minimal basic
codes maximum-distance separable (MDS) convolutional codes. Tdrcoders of . Because of this reason, McEliece [8] calls these indexes
existence was established in [1] by techniques from algebraic geometrg Forney indexes of the code These indexes are also the same as
without giving an explicit construction. This correspondence is baséte Kronecker indexes of the row module

on ideas from Justesen [3] and it provides an explicit construction of N .

MDS convolutional codes for each ratgn and each degreg The M ={u(D)G(D) € F'[D]|(D) € F*[D]}

construction itself uses a well-known connection between quasi-cyq%enG(D) is a basic encoder. The Pontryagin dual\df defines a

codes and convolutional codes which has been worked out by sevgral,y time-invariant behavior in the sense of Willems [12], [13], i.e., a

authors [3]-{6]. ) _ linear system. Under this identification, the Kronecker indexesbf
The correspondence is structured as follows. In the remainder of telﬁrespond to the observability indexes of the linear system [14]. The

section we introduce the basic notions which will be needed throughQyt, of the observability indexes is equal to the McMillan degree of

the correspondence. In Section II, we give a new derivation of the ggfa system. FinallyM defines in a natural way a quotient sheaf [15]

eralized Singleton bound (1.1). The main new results will be given i e the projective line and, in this context, one refers to the indexes

Sectionil. o . {v1,.... v} as the Grothendieck indexes of the quotient sheaf and

LetF be a finite field F[ D] the polynomial ring, ané (D) the field 5 _ Sk 1, as the degree of the quotient sheaf.
of rational functions. Let?( D) be ak x n matrix over the polynomial =
We feel that the degree is the single most important code parameter

on the side of the transmission rdtén. In the sequel, we will adopt

Manuscript received September 15, 1999; revised November 30, 2000. T, . . )
work was supported in part by NSF under Grants DMS-96-10389 and DMS-JE).Ia notation used by McEliece [8, p. 1082] and denotéihyk, 6) a

72383. The work of R. Smarandache was supported by a fellowship from #&€%/n convolutional code of degree o _ ’
Center of Applied Mathematics at the University of Notre Dame. J. Rosenthal For anyn-component vector € F", we define its weightvt (v) as
was carrying out this work while he was a Guest Professor at EPFL in Switzeite number of all its nonzero components. The weightv(D)) of a

land. The material in this correspondence was presented in part at the 2000 '%Etorv(D) € F"(D) is then the sum of the weights of all &' -co-
International Symposium on Information Theory, Sorrento, Italy, June 25-30,

2000. efficients. Finally, we define thigee distancef the convolutional code
R. Smarandache and J. Rosenthal are with the Department of Mathemafic§, F" (D) through
University of Notre Dame, Notre Dame, IN 46556 USA (e-mail: Smaran- .
dache.1@nd.edu; Rosenthal.1@nd.edu). diree = min{wt (v(D))[v(D) € C, v(D) # 0}. (1.3)
H. Gluesing-Luerssen is with the Department of Mathematics, Universitét . . . . .
Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany (e-mail: gluesindi@s an easy but crucial observation that in case we are given a basic

mathematik.uni-oldenburg.de). encodelG(D) the free distance can also be obtained as
Communicated by R. M. Roth, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(01)04751-4. dtree = min{wt (v(D))|v(D) € M, v(D) # 0}.

0018-9448/01$10.00 © 2001 IEEE



2046 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 5, JULY 2001

This follows simply from the fact that, (D) has a polynomial right ~ Once the row degrees, ..., v of the minimal basic encoder
inverse, a nonpolynomial messageD ) would result in a nonpolyno- G(D) are specified one has a natural upper bound on the free distance
mial codewordy (D), which, of course, has infinite weight. of a convolutional code. The following result was derived in [1].

In the sequel, we wish to link the free distance to two types of dis-

tances known from the literature. Following the approach in [16], [7; Theorem 2.1:LetC be arate:/» convolutional code generated by

we shall define the column distancésand the row distances;. In minimal-basic encoding rpatn@(D). Letw, ..., vy be the row
' : degrees of7(D) andv = min{v1, ..., v} denote the value of the
order to do so let us suppose ) .
, ) smallest row degree. Finally, |étbe the number of indexes among
GD)=Go+G D+ G:D" +---+ G, D™ theindexes, ..., v; having the value. Then the free distance must

is an encoder with row degrees < --- < v;. Denote by (1.4) the Satisfy
semi-infinite sliding generator matrixas shown at the bottom of the
page. Then the convolutional code can be defined as

C={(uo, urs ..., tr,...)-Glu; €FF forj=0,1,...}. The proof given in [1] was based on the polynomial generator matrix

G(D). Inthe sequel, we provide a proof by means of the sliding matrix
Then thejth-order column distancé is defined as the minimum of G(int)roduced inq(l 4) P P y g

dvee <n(v+1)—L£41. (2.2)

the weights of the truncated codewords j; := (vo, v1, ..., v;) re- Proof: Without loss of generality, we may assume

sulting from an information sequeneg, ;) := (uo, ¥1, ..., %;) With '

ug # 0. Precisely, ifG' denotes thé(j+ 1) x n(j +1) upper-left sub- v=wv << v

matrix of the semi-infinite matrix+, thend; = min.,-0 wt(up,j1 - Let G be the infinite sliding generator matrix associated:aD) as

G7). The quantityl;, is called theminimum distancef the code and in (1.4). We will show that the bound (2.1) is actually a bound on the

the tupled® = [d, di. ..., d;, ] is called thedistance profile The  oth row distancel; defined in (1.5),; in other words, we will show that

limit d2, = lim;— dj exists and we have the relation d5 < n(v 4 1) — £ + 1. From this, the claim follows using (1.6). To
ds < d§ <-eo < dl. prove the bound odg, we only need to look at the first block-row of

. . . - ... .. the sliding matrixG' denoted by
Thendg, is the minimal distance computed over all finite or infinite

codewords of’. It is shown in [7] thatl’, = diree. Go=[Go G1 -+ Guy Guy41 -+ Gupl-

The jth row distanced; is defined as the minimum of the weightsfFor all j = 0, ..., vy let G;» denote the/ x n matrix formed by
of all the finite codewordsyo, ;1.1 := (vo, v1, ..., vty ) resulting  the first¢ rows of the matrixG;. All matricesG), 41, .. .. G, are
from an information sequenego, ;; := (uo, u1, ..., u;) # 0. Thus, zero. Hence the minimum distandgof the[n (v, + 1), k] block code
if we denote byG'; thek(j + 1) x n(j + v, + 1) upper-left submatrix generated byGo G -+ G., Gu 41 -+ G,,] is smaller than
of the semi-infinite matri>“, the jth-row distance is the minimum distance of thi:(» + 1), (] block code generated by

d; = wmin_ wt(ug ;- G}). @5 Go:=I[GyGi -~ G, ], whichis upper-bounded by the Singleton
“[0, 5170 boundn(v + 1) — (+ 1. Therefore, we obtain the desired boundign
The limitdZ, = lim;_ . d} exists and one has (see, e.g., [7]) for evergnd hence on the free distance
encoderGG( D) the relation dipoe = Al < - < Ay < d) <dj <n(v+1)—(+1. O

Int f stat d i 171 141 | lto the mi Remark 2.2: It was pointed out to the authors by a referee that The-
In terms of state-space descrip ions [ _]’ [44] is equal to the min- orem 2.1 can also be derived from [8, Theorem 4.4] and [8, Corol-
imal weight of a nonzero trajectory which starts from and returns ry 4.3]

the all-zero statels, is equal to the minimal weight of a nonzero tra-

jectory which starts from and not necessarily returns to the all-zeroln the case of a block code, i.e., when= 0 and¢ = k, the upper

state. Furthermore, if the generator mati&D ) is minimal basic, then bound in (2.1) is identical to the Singleton bound (1.2).

dS, = dl, = dnee (see [17], [7] for details). It follows that for a basic It is easy to see that for given k, andé, the upper bound (2.1) is
encoder the minimal-weight codewords are generated by finite infanaximized if and only ifv is as big as possible whileis as small as
mation sequences. possible, which results in

Z/:I_(S/kJ :Vl:"':V/f<Z//f+1 —
=y, = [§/k|+1=v+1. (2.2)

"% will call the above set of indexes teneric set of row degrees
they are sometimes referred to in the systems literature.

II. THE GENERALIZED SINGLETON BOUND

It is certainly a most natural question to ask how large the dista
of a ratek/n code of some bounded degréean be. McEliece [8]
calls codes having the largest free distance amongalk, §) codes
distance optimalCodes of degreé = 0 correspond tdn, k] linear Remark 2.3: McEliece [8, p. 1083] calls a codthaving the generic
block codes and here we know that the distance cannot be larger teahof row degreesompact In systems theory, the set of row degrees
the Singleton bound — & + 1. In [1], it was shown that the free dis- v1, ..., v; corresponds to thebservability indexesf the associated
tance can never be larger than the generalized Singleton bound ({Pgntryagin dual) linear system. (Compare with Remark 1.2 and [14]).
for an(n, k, §)-code. In the sequel we will give a new derivation ofitis known that the set of all linear systems having a fixed input number
this bound. k, a fixed output number — &, and a fixed McMillan degre&has in a

Go Gi - Gu Guig Gy,
G= Go Gi - Guo Gupr -0 Gy, . 1.4)
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natural way the structure of a smooth projective variety [15]. The subset not necessarily the generic set of indexes. It is an open question
of systems having the generic set of row degrees forms a Zariski opethere always exist convolutional codes having given row degrees

subset of this variety, i.e., a generic set in the sense of algebraic geam= », < --- < 14 and free distance equal to the right-hand side
etry. This explains why systems theorists call the indexes appearingin(2.1).
(2.2) the generic set of row degrees. We conclude the section with a simple theorem that tells us how to

bttain MDS convolutional codes of raté/» from MDS codes of rate

. . 0
Specializing the above result to the generic set of row degrees we E?n wherek! < k

the following upper bound in terms of the degree
Theorem 2.8: LetC be a convolutional code of rate/n generated

Theorem 2.4: For every base fieldr and every raté /n convolu- by the minimal-basic encoding matr&(D) € F[D]**" with row

tional codeC of degree’, the free distance is bounded by

indexes
iree < (n = F)([8/k] + 1)+ 6+ 1. (2.3) v=vi=-=v < V41 < < v, wherel < E.
The main result of [1] states. LetG(D) € F[D]**~Y*" be the matrix obtained fro( D) by omit-

ting any of the last — ¢ last rows ofG(D). If the free distance of
Theorem 2.5: For any positive integers < », ¢ and for any prime  achieves the upper bound (2.1), then the same is true for the(tode
p there exists a rate/n convolutional cod€ of degree) over a suffi- generated by the encodét. In particular, ifC is an MDS code, then
ciently big field of characteristip, whose free distance is equal to theyg jsC.
upper bound (2.3). Proof: First note that noncatastrophicity as well as the full-rank
r%o_nditions carry over to the matr&. Moreover, the code§ andC
both have the same minimal row degre@nd the same numbérof
Definition 2.6: The upper bound (2.3) is called theneralized Sin- rows having this degree. Therefore, the upper bound (2.1) has the
gleton boundA ratek /» code of degreé whose free distance achievessame value for both codes and the theorem follows from the inclusion
the generalized Singleton bound is called\iRS convolutional code C C C. O

Based on Theorems 2.4 and 2.5 we introduce the following notio

The proof of Theorem 2.5 given in [1] is nhonconstructive and it
makes use of algebraic geometry. For some special set of kates
and degreé, e.g.,k = 1 [18] or k = § — 1 [19], constructions which  |n this section, we will provide a concrete construction of an
lead to MDS convolutional codes can be found in the literature. We ate,, &, 6) MDS convolutional code for each degréeand each rate
however, not aware of a construction in the general case. k/n. The underlying idea here follows the lines of [3], [5] which is

The algebraic conditions used in [1] to describe the set of MDS coan instance of the relationship between quasi-cyclic block codes and
volutional codes were very involved and we do not know of a simplsonvolutional codes. We will not go into the details of this connection,
algebraic criterion in general. For small parameters. andsé it is, rather refer the reader to [3], [4], [6].
however, often easy to decide if a particular code is MDS. The fol- As defined in [3], [5], a convolutional code is said to fenerated

[Il. A CONSTRUCTION OFRATE k/n MDS CONVOLUTIONAL CODES

lowing example illustrates this. by a polynomial
Example 2.7: Consider the rat@/3 convolutional code over the ~ ¢(D) = go(D") + g1(D")D + -+ go—1 (D")D"~"  (3.1)
base field-; defined through the encoding matrix if it has a polynomial encoder of the form (3.2) shown in at the bottom
G(D) = 1 1 1 of the page. It is immediate thaink G(0) = % if g(0) = go(0) # 0.
"7 ID+1 D 2D+2]° The code
Here the row degrees are= v1 = 0 andvz = 1,{ = 1 andthe total C = {(uo(D), ..., ux_1(D))- G(D)|
degreei® = 1.v,, v» form a generic set of row degrees and the upper (uo(D), ..., ue_1(D)) € F*[D]}

bounds in (2.1) and (2.3) are in this case both equal to o )

It follows thatG(D) is an MDS convolutional code if the free dis-IS isomorphic to
tance of this code is equal3oOne verifies that the Oth column distance  {(uo(D") + w1 (D")D + -+ + ux_ (D")D*™'). ¢(D)} (3.3)
dg = 2 and the first column distance & = 3, the m_aX|maI possible. the isomorphism is simply multiplexing and, therefore, weight-pre-

It follows from Theorem 2.1 that MDS convolutional codes neces:__ . . o
. . . . serving. We will not use the description (3.3) but rather the encoder
sarily have the generic set of row degrees as in (2.2). It is worth MeN- trix in (3.2)
tlonln_g that \.N'th'n the class of all rate/n codes with fixed degreé, .. The following theorem will lead us to the construction of MDS con-
the distribution (2.2) of the row degrees leads to the smallest p055|blef . .
memory volutional codes. Recall that two elements € F are called:-equiv-

' . ) ) ifa” = b".

The set of convolutional codes of rat¢n and degreé is subdi- alent ifa
vided into codes whose encoding matri¢eésD ) have a fixed set of  Theorem 3.1 [3, Theorem 3]Let p be a prime and € N. Let
row degrees,, ..., vy with é = Zle v;. In Theorem 2.1, we gave g(D) € F,-[D] generate a cyclic code ovEp- of lengthV relatively

an upper bound for the free distance for a code whose row degreesne top and of distancd,. Letn be any positive divisor oV and

9o(D) 91(D) 92(D) e gami(D)
Dgy—1(D) go(D) g1(D) e gn—2(D)

Dgn—t+1(D) Dgn—g42(D) -+ Dgu—r(D) go(D) -+ gun-s(D)
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k < n.If g(D) has at most: — % roots in eachu-equivalence class, Next we prove thay satisfies the root condition given in Theorem
then the generator matri%(D) defined in (3.2) is basic minimal and 3.1. To do so, observe that theequivalence class ef’, where0 <
describes & /n convolutional code of free distandg.. > d,. s < a — 1, consists of

. et s42 aln—k=1) sta(n—Fk)
Now we are ready to construct MDS codes of any rate and L st

any degreé. The idea is as follows. We will construct a polynomiatthe form of¢(D) in (3.6) shows that each suehequivalence class
9(D) € Fpr[D] of degreeN — K" which generates a raf&V, K]  contains at most — k roots ofg(D) if N — K < (n — k)a. This is
Reed-Solomon block code whose distance is equal to the Singleffleed guaranteed by constructionoih (3.4)
boundN — R + 1. The parameterd and K will be chosen such that
n|N anddy = (n—k)([6/k] + 1)+ &+ 1, which is the MDS bound > 18 6 N-K

’ Okl +14+ —— = —+ 3.7
for the given parameters %, andé (see (2.3)). The polynomigi D) @2 [8/k]+1+ 3.7)

n—k n—k "
will satisfy the conditions of Theorem 3.1, thus we obtain the desirel\tlj H 1implies that th D) ai . 2Vis mi
MDS convolutional code. ow Theorem 3.1 implies that the encodé(D) given in (3.2) is min-

To accomplish this the following technical lemma will be needed. gngasm and generates an MDS code with the given parametgs

Lemma 3.2: Let p be a prime andk, n, 6 fixed positive integers
such thatp andn are relatively prime and < n. Then there exist
positive integers anda

Remark 3.4: The above proof is quite similar to the proof of [3,
Theorem 4]. Actually, Justesen’s Theorem 4 can be considered a spe-
cial case of the above, namely, the case wher= ka. In the above
a> [6/k] +1+6/(n—k) (3.4)  construction, we have more generally > ka, see (3.7). The case

solving the Diophantine equation K = ka can occur only ifn — %)|6, which we did not require.

an =p" — 1. (3.5) It is interesting to study the constructed convolutional code via the
semi-infinite sliding generator matrix as introduced in (1.4). To do so

Proof: Consider the multiplicative groupz/nz)" which has \ye expand the generator polynomidiD) in terms of its coefficients

orderé(n). Since(p, n) = 1 we know thap'*™) = 1 mod » for all
i > 1.1In pgrt_icular,pi-#/»(n) — 1 is divisible byn. Choose such that gD)=co+crD+---+en_gDVTE.
(3.4) is satisfied for
io(n) _ q The[N, K] Reed—Solomon block code generated;b®) has a gen-
a=L ——° O erator matrix of the form
n
Co €1ttt CN—K
In the sequel, assume thatr is a solution of (3.5) satisfying the co 1 CN—K
inequality (3.4). LetV = an andletl’ = N —(n—Fk)(|6/k]+1)—6. g= . . . . (3.8)
Itis easily seen thdt < K < N. Leta € F,~ be a primitive element - - -
of F,~ and define o e “rr CN—K

g(D)=(D-a")(D-a')---(D-a™" """ e F,r[D]. (3.6) A direct calculation now shows that the firktrows of the matrixG

The polynomial( D) defines aratéV, K] Reed—Solomon block code appear as the upper-left corner of the maiin (1.4), where, again,

with distance the matrixG(D) is as in (3.2). Thereafter, rows + 1, ..., j77 + k
of G correspond to rowgk + 1, ..., (j + 1)k of G expressing the
dg=N—-K+1=(m-k)([6/k]+1)+6+1 polynomial description (3.3). i was an infinite sliding-block matrix

it would trivially follow that the convolutional codé/(D) has free
distancels,.. > N — K + 1. Theorem 3.1 of Justesen and in particular
Theorem 3.3:Letp, n, k andé be integers with: < » andn not  the “weight retaining property” as studied by Massey, Costello, and

divisible byp. Then there exists an MDS convolutional code of fate  Justesen [5] guarantee that the distance estimate holds for the semi-
and degreé over some suitably big field of characteristidndeed, the  infinite sliding generator matri%.
generator matrixz( D) in (3.2) induced by the polynomigl D) given
in (3.6) defines an MDS convolutional code of rété: and degreé
overF,-.

Proof: Firstwe show that the generator matfixD) is of degree
8. In order to do so, we calculate the degrees of the polynomial3)

as desired.

Remark 3.5: We formulated Theorem 3.3 with a prescribed char-
acteristicp of the field over which we construct the MDS convolu-
tional code. If one is interested in the smallest possible field where this
construction works, regardless of characteristic, one should, of course,

in the expansion (3.1) of( D). First note that chooser to pe the.smallest integer such thg:_? L6/k] -_|—1-|—é/_(n —k)
i andan + 1 is a prime power. In any case, it follows immediately from
degg(D)=N-K=nv+n—{ (3.4) and (3.5) that the field size is the smallest possible prime power

wherev = |8/k] andf = k(|6/k|+1)—6 > 0. Sinceg(D) definesa ¢ for which
Reed—-Solomon block code it follows that all its coefficient are nonzero

and one obtains n|(¢g—1) and ¢ > éﬁ + 2. (3.9)
deg g:(D) = v, fori=0,....,n—{( (n = k)
deggi(D)=v — 1, fori=n—-(+4+1,...,n—1.

o . , We close this section with a few examples.
This implies that the row degrees 6f D) are indeed as in (2.2) and

thatG (D) is minimal. Thus, the degree of the code generated @) Example 3.6: Suppose we want to construct® 2, 5) MDS con-
is simply given by the sum of the row degrees, which is in fact volutional code. The MDS bound is in this ca&and from (3.9) we
, o, e . need the smallest prime powgr bigger thar24, such thap” — 1 is
(k=0 +1) =klo/k +1) = =0 divisible by 3. The smallest possible field 5= and we will need a
Observe also thatink G(0) = k. rate[24, 16] Reed—Solomon code for the construction.
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(128 +a35D+a57D2

G(D): oD + o?%D? + D?

14+ a%D+ a'?D?
a2 4 a¥ D+ a5 D2

2049

068 +Oé26D+D2
1+ a®D + a"D?

If we want however an MDS code in characteristiche smallest [8]
field is F,s, and we need a raf63, 55] Reed—Solomon code. Using,
e.g., MAPLE, one calculates [9]
7
; [10]
g(D) = H(D —a')
=0 [11]
:D8+a42DT+a57D6+a26D5+a6D4+a35D3
+a°D* + D +a*® [12]
=@ +a¥D*+a"" D)+ D(1 + o’ D* + oD%
+ D*(a® +o*°D* + D% [13]
. - . [14]
wherea is a primitive ofF,s . Hence, an encoder for(8, 2, 5) MDS
convolutional code is given by the equation at the top of the page.
Example 3.7: Another example that we give is(a, 2, 12) MDS [15]
convolutional code. The MDS boundig6 +1) —2+1 = 34 and, as
before, we will need the smallest prime powérbigger tharb5, such
thatp” — 1 is divisible by5. The smallest possible field & and we  [16]
need g60, 27] Reed—Solomon code for the construction.
If we want to have the construction over a field of characteristie@
will have to take: = 51 in (3.5) whichmakesV = ¢—1=2—-1=
255. The Reed—Solomon code that we use has paramaters 255  [17]
and k' = 222. [18]
IV. CONCLUSION [19]

In this correspondence, we constructed MDS convolutional codepo]
for each raté:/n and for each code of degréeThe construction was
based on the construction of a large Reed—Solomon block code and
because of this the obtained convolutional code is closely related to
this Reed—Solomon code. The correspondence raises several follow-up
questions. Is it possible to come up with an independent construction
which does not require the relative primeness of the characteriatid
the lengthn of the code, and/or which does not need such large field
sizes? Is it possible to carry through some subfield constructions and is
it possible to come up with an algebraic decoding algorithm? Finally,
it would be interesting to understand MDS convolutional codes from
the point of view of state dynamics. Some answers in these directions
were given in [17], [20] but more research is needed.

REFERENCES

[1] J. Rosenthal and R. Smarandache, “Maximum distance separable con-
volutional codes,Appl. Algebra Engrg. Comm. Computol. 10, no. 1,
pp. 15-32, 1999.
[2] F. J. MacWilliams and N. J. Sloan&he Theory of Error-Correcting
Codes Amsterdam, The Netherlands: North Holland, 1977.
[3] J.Justesen, “New convolutional code constructions and a class of asymp-
totically good time-varying codesfEEE Trans. Inform. Theoryol.
IT-19, pp. 220-225, Mar. 1973.
Y. Levy and D. J. Costello, Jr., “An algebraic approach to constructing
convolutional codes from quasicyclic codeB/MACS Ser. Discr. Math.
Theor. Comput. Sgivol. 14, pp. 189-198, 1993.
[5] J. L. Massey, D. J. Costello, Jr., and J. Justesen, “Polynomial weights
and code constructions|EEE Trans. Inform. Theoryol. IT-19, pp.
101-110, Jan. 1973.
R. M. Tanner, “Convolutional codes from quasicyclic codes: A link be-
tween the theories of block and convolutional codes,” Univ. Calif., Santa
Cruz, Tech. Rep. UCSC-CRL-87-21, Nov. 1987.
R. Johannesson and K. S. Zigangir®yndamentals of Convolutional
Coding Piscataway, NJ: IEEE Press, 1999.

[4]

(6]

(71

R. J. McEliece, “The algebraic theory of convolutional codesfiand-
book of Coding Theory. Pless and W. Huffman, Eds. Amsterdam,
The Netherlands: Elsevier Science, 1998, vol. 1, pp. 1065-1138.

S. Linand D. J. Costello, JiError Control Coding: Fundamentals and
Applications Englewood Cliffs, NJ: Prentice-Hall, 1983.

P. Piret, Convolutional Codes, an Algebraic ApproachCambridge,
MA: MIT Press, 1988.

G. D. Forney, “Minimal bases of rational vector spaces, with applica-
tions to multivariable linear systemsS1AM J. Contr.vol. 13, no. 3, pp.
493-520, 1975.

J. Rosenthal, J. M. Schumacher, and E. V. York, “On behaviors and
convolutional codes,JEEE Trans. Inform. Theorypt. 1, vol. 42, pp.
1881-1891, Sept. 1996.

J. C. Willems, “Paradigms and puzzles in the theory of dynamical sys-
tems,”|IEEE Trans. Automat. Contwol. 36, pp. 259-294, Mar. 1991.

J. Rosenthal, “Connections between linear systems and convolutional
codes,” inCodes, Systems and Graphical Moddss Marcus and J.
Rosenthal, Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 123, pp.
39-66.

M. S. Ravi and J. Rosenthal, “A smooth compactification of the space of
transfer functions with fixed McMillan degreeActa Appl. Math vol.

34, pp. 329-352, 1994.

R. Johannesson and K. Zigangirov, “Distances and distance bounds for
convolutional codes—An overview,” iffopics in Coding Theory. In
honor of L. H. Zetterberg (Lecture Notes in Control and Information
Sciences) Berlin, Germany: Springer Verlag, 1989, vol. 128, pp.
109-136.

J. Rosenthal and E. V. York, “BCH convolutional code;EE Trans.
Inform. Theoryvol. 45, pp. 1833-1844, Sept. 1999.

J. Justesen, “An algebraic construction of figte convolutional codes,”
IEEE Trans. Inform. Theoryol. IT-21, pp. 577-580, Jan. 1975.

G. Lauer, “Some optimal partial-unit-memory codelsEE Trans. In-
form. Theoryvol. IT-25, pp. 240-243, Mar. 1979.

R. Smarandache, “Unit memory convolutional codes with maximum
distance,” inCodes, Systems and Graphical Modd&s Marcus and J.
Rosenthal, Eds. Berlin, Germany: Springer-Verlag, 2000, vol. 123, pp.
381-396.




