
On the Algebraic Parameters of Convolutional Codes with

Cyclic Structure

Heide Gluesing-Luerssen∗ and Barbara Langfeld†

October 5, 2004

Abstract

In this paper convolutional codes with cyclic structure will be investigated. These codes
can be understood as left principal ideals in a suitable skew-polynomial ring. It has
been shown in [4] that only certain combinations of the algebraic parameters (field size,
length, dimension, and Forney indices) can occur for such cyclic codes. We will investigate
whether all these combinations can indeed be realized by a suitable cyclic code and, if
so, how to construct such a code. A complete characterization and construction will be
given for minimal cyclic codes. It is derived from a detailed investigation of the units in
the skew-polynomial ring.

Keywords: Algebraic convolutional coding theory, cyclic convolutional codes, skew-
polynomial rings, Forney indices.

MSC (2000): 94B10, 94B15, 16S36

1 Introduction

The two most important classes of codes used in practice are block codes and convolutional
codes. While both classes play an equally important role in engineering practice, the theory
of convolutional codes is much younger and not nearly as developed as the theory of block
codes. The foundation of the mathematical theory of convolutional codes was laid only in
the seventies of the last century by the articles of Forney, see e. g. [1]. It led to quite some
mathematical investigation in that decade among which are basically two groups of papers.

The first group [11, 7, 8] deals with the construction of convolutional codes with large
distance, mainly by using cyclic block codes and resorting to the weight-retaining property for
bridging the gap between cosets of polynomials in the block code case and vector polynomials
in the convolutional case. These ideas were resumed later on again in [20], leading to the
construction of MDS convolutional codes.

∗University of Groningen, Department of Mathematics, P. O. Box 800, 9700 AV Groningen, The Nether-
lands; gluesing@math.rug.nl

†Kombinatorische Geometrie (M9), Zentrum Mathematik, Technische Universität München, Boltz-
mannstr. 3, 85747 Garching bei München, Germany; langfeld@ma.tum.de

1

The second group of papers [13, 14, 16] initiated a completely different approach. In the
paper [14] it was investigated for the first time as to how cyclic structure has to be understood
for a convolutional code itself. The first crucial fact being found was that cyclic structure
in the classical sense (i. e. invariance under the cyclic shift) is not an appropriate concept
for convolutional codes. Precisely, it was shown in [14] that each convolutional code that
is invariant under the cyclic shift has complexity zero, hence is a block code. This insight
has led Piret to a different, much more complex notion of cyclicity, which then was further
generalized by Roos [16]. In the simplest form this structure can be understood as a sort
of graded shift in the coefficients of the polynomial codewords. The precise notion will be
given in Section 2. At this point we only want to mention that cyclic convolutional codes
(CCC’s, for short) of length n over the field F can be understood as certain left ideals in a
skew-polynomial ring A[z;σ], where A = F[x]/〈xn − 1〉, the variable z represents the delay
operator, and σ determines the non-commutative structure. Both Piret and Roos gave several
examples of convolutional codes that are cyclic in this new sense. They also computed (or
estimated) the distances of their codes, and they turned out to be very good.

Although these papers initiated an algebraic theory of CCC’s, they did not come very far
and the topic came to a halt. Only recently it has been resumed in [4]. Therein an algebraic
theory of CCC’s, fully in terms of ideals in the skew-polynomial ring, has been established. It
leads to a nice, yet nontrivial, generalization of the algebraic theory of cyclic block codes. The
translation from ideals into polynomial vectors is achieved by suitable circulant matrices. In
particular, CCC’s are principal left ideals (thus have a generator polynomial), they are also
left annihilators of right ideals (thus have a parity check polynomial), the parameters can be
computed in terms of these polynomials, and the dual of a CCC is cyclic again. Moreover,
in [3] plenty of examples of CCC’s are given, and their distances are all optimal in the sense
that they attain the Griesmer bound, see (1.3). All this indicates that the notion of cyclicity
as introduced by Piret and Roos is the appropriate one for convolutional codes not only when
it comes to the algebraic theory, but also for constructing good codes.

We also wish to mention a very recent approach for constructing good convolutional
codes. Indeed, in [15] methods from algebraic geometry are used in order to obtain so called
Goppa convolutional codes. Several examples of codes attaining the generalized Singleton
bound (1.2) have been derived.

In this paper we will continue the algebraic theory of CCC’s as it was set up in [4]. Con-
sequently, we will work with the skew-polynomial ring A[z;σ] and identify CCC’s as certain
left ideals therein. The aim of this paper is an existence result for CCC’s with prescribed
algebraic parameters (field size, length, dimension, and Forney indices). To be more precise,
we first observe that, as a consequence of the results in [4], only certain combinations of the
algebraic parameters can occur for CCC’s; see also Theorem 2.8(3) below. Then we seek
to investigate whether all these combinations do really occur. The key role for this aim is
played by so called minimal CCC’s; these are cyclic codes without proper cyclic subcodes.
They form the building blocks of all cyclic codes in the sense that each CCC is the direct sum
of minimal CCC’s and the Forney indices of the code are given by the union of the Forney
indices of each component. Minimal codes have a very simple ideal theoretic description
in terms of their generator polynomial, see Proposition 3.3. Moreover, for these codes all
Forney indices are the same, hence these codes are compact in the sense of [12, Cor. 4.3].
This makes these codes also very important from a coding point of view since compact codes

2

are in general good candidates for having a large distance (for instance codes attaining the
generalized Singleton bound are always compact, see [19]). We will show that under a cer-
tain necessary and sufficient condition any arbitrarily chosen Forney index can be realized
by suitable minimal CCC’s and we will show how to construct such codes. This result will
then be further exploited for investigating non-minimal codes with prescribed Forney indices.
As we will show in a forthcoming paper all this may serve as a preliminary step in order to
construct CCC’s with large distance.

The outline of the paper is as follows. The end of the introduction is devoted to the basic
notions of convolutional coding theory. Thereafter in Section 2 we will introduce cyclicity
for convolutional codes along with the algebraic machinery and the main results from [4] as
needed for our purposes. In Section 3 we will turn to minimal CCC’s. Their investigation
amounts basically to a detailed study of the units in the skew polynomial ring A[z;σ]. This
will lead us to the existence of minimal codes with prescribed Forney indices under a certain
necessary and sufficient condition. Finally, in Section 4 we will turn to certain direct sums of
minimal codes. These direct sums are specific in the sense that the generator polynomials of
the minimal components are pairwise orthogonal, resulting in an easy handling of the direct
sum. The existence result from Section 3 will be extended to these codes.

We will end the introduction with repeating the basic notions of convolutional coding
theory. Convolutional codes are certain submodules of F[z]n, where F is a finite field. Before
presenting the definition we wish to recall that each submodule S of F[z]n is free and therefore
can be written as

S = imG :=
{
uG

∣∣u ∈ F[z]k
}

where k is the rank of S and G ∈ F[z]k×n is a matrix containing a basis of S. Any such
matrix G is called a generator matrix of the module S. It is unique up to left multiplication
by a unimodular matrix, that is, for any pair of matrices G, G′ ∈ F[z]k×n having full row
rank the identity imG = imG′ is equivalent to G′ = V G for some matrix V ∈ Glk(F[z]).
This makes the following notions well-defined.

Definition 1.1 Let F be any finite field and let G ∈ F[z]k×n be a matrix of rank k.

(a) The number δ := δ(G) := max{deg γ | γ is a k-minor of G} is called the complexity of
the submodule imG or of the matrix G.

(b) The submodule C := imG ⊆ F[z]n of rank k is called a convolutional code over F with
(algebraic) parameters (n, k, δ) if it has complexity δ and the matrix G is right invertible,
i. e., if there exists some matrix G̃ ∈ F[z]n×k such that GG̃ = Ik. In this case the
parameter n is called the length of the code.

Notice that the algebraic parameters (n, k, δ) do not contain any information about the
error-correcting properties of the code. The complexity is also known as the overall constraint
length [6, p. 55], [1, p. 721] or the degree [12, Def. 3.5] of the code. It is an important parameter
describing the size of the code and of the encoding process. In the coding literature a right
invertible matrix is often called basic [1, p. 730] or delay-free and non-catastrophic, see [12,
p.1102]. Often in coding literature convolutional codes are defined as subspaces of the vector
space F((z))n of vector valued Laurent series over F, see for instance [12] and [1]. However, as
long as one restricts to right invertible generator matrices it makes no difference with respect
to code properties and code constructions whether one works in the context of infinite message

3

and codeword sequences (Laurent series) or finite ones (polynomials). Only for decoding it
becomes important whether or not one may assume the sent codeword to be finite. The issue
whether convolutional coding theory should be based on finite or infinite message sequences
has first been raised and discussed in detail in [18, 17].

Since every right invertible matrix G ∈ F[z]k×n can be completed to a unimodular matrix
(e.g. by using the Smith normal form), one has the following properties.

Remark 1.2 (a) The convolutional codes over F of length n are the direct summands of the
module F[z]n.

(b) Each convolutional code C ⊆ F[z]n has a parity check matrix, that is, there exists a
matrix H ∈ F[z]n×(n−rk C) such that C = kerH := {v ∈ F[z]n | vH = 0}.

Part (b) can be considered as one of the main reasons for restricting to direct summands rather
than arbitrary submodules for convolutional codes. A parity check matrix is an important
tool for data transmission since it is helpful for checking whether or not the received data are
erroneous.

The following property of convolutional codes will be needed later on.

Lemma 1.3 Let C, Ĉ ⊆ F[z]n be two submodules having the same rank and satisfying Ĉ ⊆ C.
Furthermore, let Ĉ be a convolutional code. Then Ĉ = C.

Proof: Let C = imG and Ĉ = im Ĝ where G, Ĝ ∈ F[z]k×n and Ĝ is right invertible. The
assumption Ĉ ⊆ C implies the existence of some matrix U ∈ F[z]k×k such that Ĝ = UG.
Using a right inverse of Ĝ shows U ∈ Glk(F[z]) and the assertion follows. 2

It is well-known that each submodule of F[z]n has a minimal generator matrix in the
sense of the next definition [1, Thm. 5] or [2, p. 495]. In the same paper [2, Sec. 4] it has been
shown how to derive such a matrix from a given generator matrix in a constructive way.

Definition 1.4 (1) For v =
∑N

j=0 vjz
j ∈ F[z]n where vj ∈ Fn and vN 6= 0 let deg v =: N be

the degree of v. Moreover, put deg 0 = −∞.
(2) Let G ∈ F[z]k×n be a matrix with rank k and complexity δ and let ν1, . . . , νk be the

degrees of the rows of G. We say that G is minimal if δ =
∑k

i=1 νi. In this case the row
degrees of G are uniquely determined by the submodule S := imG. They are called the
Forney indices of S.

The notion “minimal” stems from the fact that for an arbitrary generator matrix G one has
δ ≤

∑k
i=1 νi. Thus, in a minimal generator matrix the rows degrees have been reduced to

their minimal values.

From the above it follows that a convolutional code with parameters (n, k, δ) has a
constant generator matrix if and only if δ = 0. In that case the code can be regarded
as an (n, k)-block code.

The most important concept for a code is its distance. It measures the error-correcting
capability, hence the quality, of the code. The definition of the distance of a convolutional
code is straightforward. For a constant vector w = (w1, . . . , wn) ∈ Fn we define, just like in
block code theory, its (Hamming) weight as wt(w) = #{i | wi 6= 0}. For a polynomial vector

4

v =
∑N

j=0 vjz
j ∈ F[z]n, where vj ∈ Fn, the weight is defined as wt(v) =

∑N
j=0 wt(vj). Then

the (free) distance of a code C ⊆ F[z]n with generator matrix G ∈ F[z]k×n is given as

dist(C) := min{wt(v) | v ∈ C, v 6= 0} = min
{
wt(uG)

∣∣u ∈ F[z]k, u 6= 0
}
. (1.1)

In coding theoretic terms this notion is based on counting only the number of errors during
data transmission, but not their magnitude; for more details about the distance of convo-
lutional codes see for instance [6, Sec. 3.1]. Although we will not present any theoretical
results concerning the distance of a CCC we will show several examples of codes which do
have optimal distance. In all these cases the distances have been computed with routines
written in Maple and then compared to some suitable bound known from the literature. One
of these bounds is the generalized Singleton bound [19] stating that the distance d of a code
with parameters (n, k, δ) over any field satisfies

d ≤ S(n, k, δ) := (n− k)
(⌊ δ
k

⌋
+ 1

)
+ δ + 1. (1.2)

A code C with dist(C) = S(n, k, δ) is called an MDS code; see [19]. The Griesmer bound also
takes the field size into account. It states that each code over a field with q elements and
with parameters (n, k, δ) and largest Forney index m has distance d bounded by

d ≤ max
{
d′ ∈ {1, . . . , S(n, k, δ)}

∣∣∣ k(m+i)−δ−1∑
l=0

⌈d′
ql

⌉
≤ n(m+ i) for all i ∈ N̂

}
, (1.3)

see [6, 3.22] for q = 2 and [3, Thm. 3.4] for general field size. At the end of Sections 3 and 4
we will present several codes where the distance attains this maximum value.

2 The Piret algebra and the Notion of Cyclicity

In this section we will introduce the notion of cyclicity for convolutional codes. This will
require quite some algebraic machinery, but we will restrict ourselves to introducing the
notions that are absolutely necessary for the rest of the paper. First we will recall from [14]
that the classical notion of invariance under cyclic shift will always lead to complexity zero,
hence is much to restrictive for convolutional codes. We will then introduce a more general
notion of cyclicity, taken from [14, 16, 4]. In order to do so, we define the skew-polynomial
ring A[z;σ]. It is isomorphic to F[z]n as left F[z]-module, and we will declare a code in F[z]n

cyclic if it corresponds to a left ideal in A[z;σ]. We will briefly discuss some features of A[z;σ]
and summarize the main results about cyclic codes, as obtained in [4], in Theorem 2.8.
Moreover, we will introduce the notion of unmixed polynomials in A[z;σ].

Just like for cyclic block codes we assume from now on that the length n and the field
size |F| are coprime. Recall that a block code C ⊆ Fn is called cyclic if it is invariant under
the cyclic shift, i. e.,

(v0, . . . , vn−1) ∈ C =⇒ (vn−1, v0, . . . , vn−2) ∈ C (2.1)

5

for all (v0, . . . , vn−1) ∈ Fn. It is well-known that this is the case if and only if C is an ideal in
the quotient ring

A := F[x]/〈xn − 1〉 =
{ n−1∑

i=0

fix
i mod (xn − 1)

∣∣∣ f0, . . . , fn−1 ∈ F
}
, (2.2)

which we canonically identify with Fn via the mapping

p : Fn −→ A, (v0, . . . , vn−1) 7−→
n−1∑
i=0

vix
i mod (xn − 1).

Recall that the cyclic shift in Fn translates into multiplication by x in A, i. e.,

p(vn−1, v0, . . . , vn−2) = xp(v0, . . . , vn−1) (2.3)

for all (v0, . . . , vn−1) ∈ Fn.

In order to extend the situation of cyclic block codes to the convolutional setting, we have
to replace the vector space Fn by the free module F[z]n = {

∑N
j=0 z

jvj | N ∈ N0, vj ∈ Fn}
and, consequently, the ring A by the polynomial ring A[z] = {

∑N
j=0 z

jaj | N ∈ N0, aj ∈ A}.
Then we can extend the mapping p above coefficient-wise to these polynomials. Precisely,
p
(∑N

j=0 z
jvj

)
=

∑N
j=0 z

jp(vj), where, of course, vj ∈ Fn and thus p(vj) ∈ A for all j. This
mapping is an isomorphism of F[z]-modules. Again by construction, the cyclic shift in F[z]n

corresponds to multiplication by x in A[z], that is, we have (2.3) for all (v0, . . . , vn−1) ∈ F[z]n.
At this point it sounds quite natural to call a convolutional code C ⊆ F[z]n cyclic if it is
invariant under the cyclic shift, i. e., if (2.1) holds true for all (v0, . . . , vn−1) ∈ F[z]n. This,
however, does not result in any codes other than block codes. Indeed, in [14, Thm. 3.12] and
[16, Thm. 6] it has been shown that any convolutional code C ⊆ F[z]n satisfying (2.1) for all
(v0, . . . , vn−1) ∈ F[z]n has complexity zero, thus is a block code. For an elementary proof see
also [4, Prop. 2.7].

This result has led Piret [14] to suggesting a different notion of cyclicity for convolutional
codes. We will present this notion in the slightly more general version introduced by Roos [16].
In order to do so, notice that F can be regarded in a natural way as a subfield of the ring A.
As a consequence, A is an F-algebra. In the sequel the automorphism group AutF(A) of the
F-algebra A will play an important role. Details of how to determine this group can be found
in [4, Sec. 3]

The main idea of Piret and Roos was to impose a new ring structure on A[z] and to
declare a code cyclic if it is a left ideal with respect to that ring structure. The new structure
is non-commutative and based on an (arbitrarily chosen) automorphism on A. In detail this
looks as follows.

Definition 2.1 Let σ ∈ AutF(A).

(1) On the set A[z] we define addition as usual while multiplication is defined via the rule

az = zσ(a) for all a ∈ A (2.4)

along with classical multiplication for the coefficients in the quotient ring A as well as
associativity and distributivity. This turns A[z] into a skew-polynomial ring, denoted by
A[z;σ]. We call A[z;σ] a Piret algebra.

6

(2) Consider the mapping

p : F[z]n→A[z;σ],
N∑

j=0

zj(vj,0, . . . , vj,n−1) −→
N∑

j=0

zj
n−1∑
i=0

vj,ix
i.

A submodule S ⊆ F[z]n is said to be σ-cyclic if p(S) is a left ideal in A[z;σ]. A con-
volutional code C ⊆ F[z]n is said to be σ-cyclic (or a σ-CCC) if C is a direct summand
of F[z]n and a σ-cyclic submodule.

Notice the following two facts. Firstly, cyclic block codes (in the classical sense of (2.1)) are
σ-cyclic for all automorphisms σ. Secondly, unless σ is the identity, the indeterminate z does
not commute with its coefficients. Consequently, it becomes important to distinguish between
left and right coefficients of z. Of course, the coefficients can be moved to either side since σ
is invertible. In the sequel we will always use the representation via right coefficients since
that is the one needed for the mapping p in part (2) above. Since multiplication inside A
remains the same as before, A is a commutative subring of A[z;σ]. Moreover, since σ|F = idF,
the classical polynomial ring F[z] is a commutative subring of A[z;σ], too. As a consequence,
A[z;σ] is a left and right F[z]-module. One can show that the mapping p : F[z]n → A[z;σ]
is an isomorphism of left F[z]-modules (but not of right F[z]-modules). We will denote the
inverse as

p−1 = v. (2.5)

In the special case where σ = idA, the ring A[z;σ] is the classical commutative polynomial
ring and we know from the result mentioned above that no σ-cyclic convolutional codes with
nonzero complexity exist. In [4, Prop 3.4] all automorphisms σ allowing no σ-CCC with
positive complexity have been characterizied. We will come to this point in detail later on.
The reader might also have noticed that both module structures on A[z;σ], over the ring
A[z;σ] as well as over F[z], are used in the definition of a σ-CCC. As one might expect, this
will turn out to be expressible in simpler terms (cf. Remark 2.10 at the end of this secion).

Example 2.2 Let us consider the case where F = F2 and n = 7. Thus A = F2[x]/〈x7 − 1〉.
In this case AutF(A) contains 18 automorphisms (see also [16, p. 680, Table II]), one of which
is defined via σ(x) = x5. We choose this automorphism for the following computations.
Consider the polynomial

g := 1 + x2 + x3 + x4 + z(x+ x2 + x3 + x5) + z2(1 + x+ x4 + x6) ∈ A[z;σ] (2.6)

and denote by
•〈 g 〉 := {fg | f ∈ A[z;σ]} the left ideal generated by g in A[z;σ]. Moreover,

put C := v(
•〈 g 〉) ⊆ F[z]7. We will show now that C is a direct summand of F[z]7, hence C is

a σ-cyclic convolutional code. In order to do so we first notice
•〈 g 〉 = span F[z]

{
g, xg, . . . , x6g

}
and therefore, using the isomorphism v from (2.5),

C =
{
uM

∣∣u ∈ F[z]7
}

where M =


v(g)
v(xg)

...
v(x6g)

 ∈ F[z]7×7.

7

Thus we have to compute xig for i = 1, . . . , 6. Using the multiplication rule in (2.4) we obtain

xg = x+ x3 + x4 + x5 + z(1 + x+ x3 + x6) + z2(x+ x3 + x4 + x5),

x2g = x2 + x4 + x5 + x6 + z(x+ x4 + x5 + x6) + z2(1 + x+ x2 + x5),

x3g = 1 + x3 + x5 + x6 + z(x2 + x3 + x4 + x6) + z2(1 + x3 + x5 + x6) = g + x2g.

Since x3g is in the F-span of the previous elements, we obtain
•〈 g 〉 = span F[z]

{
g, xg, x2g

}
and, since v is an isomorphism, C =

{
uG

∣∣u ∈ F[z]3
}
, where

G =

 v(g)
v(xg)
v(x2g)

 =

1 + z2 z + z2 1 + z 1 + z 1 + z2 z z2

z 1 + z + z2 0 1 + z + z2 1 + z2 1 + z2 z
z2 z + z2 1 + z2 0 1 + z 1 + z + z2 1 + z

 .
One can easily check that the matrix G is right invertible and minimal (see Definition 1.4).
Hence C ⊆ F[z]7 is indeed a CCC. It is worth mentioning that dist(C) = 12 (derived via Maple
routines), and this is the optimum value for any convolutional code over F2 with parameters
(7, 3, 6) by virtue of the Griesmer bound (1.3).

For our investigations in the next sections we will not only need the main results on
CCC’s as derived in [4], but also part of the machinery. In the rest of this section we will
introduce the concepts and results that are absolutely necessary for the subsequent sections.

The main tool for describing the left ideals in A[z;σ] is the fact that A is a direct product
of fields. Since we need the details of this fact, we will first elaborate on this. By coprimeness
of the length n and the field size |F|, the polynomial xn − 1 is square free, say

xn − 1 = π1 · . . . · πr, (2.7)

where π1, . . . , πr ∈ F[x] are irreducible, monic, and pairwise different. We will also assume
that the polynomials are ordered according to

degx π1 ≤ . . . ≤ degx πr.

The Chinese Remainder Theorem provides us with an isomorphism of rings

ψ : A −→ K1 × . . .×Kr, a 7−→
(
a mod π1, . . . , a mod πr

)
(2.8)

where Kk = F[x]/〈πk〉. Notice that Kk
∼= Kl if and only if degx πk = degx πl. Even though

we will not present elements in A explicitly in the form
(
a mod π1, . . . , a mod πr

)
it is quite

helpful for computations to have this representation, along with componentwise operations,
in mind. The elements

ε(k) := ψ−1
(
0, . . . , 0, 1, 0, . . . , 0

)
for k = 1, . . . , r

(where 0 and 1 have to be understood as the elements 0 mod πl and 1 mod πl in Kl) are
particularly important since they form the uniquely determined set of primitive idempotents
in A. Furthermore, the idempotents are pairwise orthogonal, thus ε(k)ε(l) = 0 for k 6= l.
Observe that for any a ∈ A the products ε(l)a single out the various components of a.
Precisely, ψ(ε(l)a) = (0, . . . , 0, amod πl, 0, . . . , 0) for any l = 1, . . . , r. Hence ε(1)a+ . . .+ε(r)a

8

might serve as a decomposition of a ∈ A just like the one in (2.8). In the sequel we will use
this representation rather than the one from (2.8). Moreover we have

a ∈ A is a unit in A⇐⇒ ε(l)a 6= 0 for all l = 1, . . . , r. (2.9)

Let us now study the effect of a given automorphism σ ∈ AutF(A) on the components.
It is straightforward to see that

σ(ε(k)) = ε(l) for some l such that degx πk = degx πl. (2.10)

Thus σ induces a permutation on the primitive idempotents. This gives rise to the following
definition. We will use the notation Sr for the symmetric group on r symbols.

Definition 2.3 Let σ ∈ AutF(A). Define the permutation Πσ ∈ Sr via Πσ(k) = l, where l
is such that σ(ε(k)) = ε(l) for all k = 1 . . . , r. We call Πσ the permutation induced by σ.
Furthermore, define the equivalence relation ≡σ on the index set {1, . . . , r} via k ≡σ l if there
exists some i ∈ N0 such that σi(ε(k)) = ε(l).

Of course, the permutation Πσ simply reflects the permutation induced by σ on the set
{ε(1), . . . , ε(r)}, that is, σ(ε(k)) = ε(Πσ(k)). It is worth noticing that in general not the whole
permutation group Sr can be realized by induced permutations. This can be seen immediately
from (2.10). Notice also, that by definition k ≡σ l if and only if k and l belong to the same
cycle of the permutation Πσ. Thus, by (2.10), k ≡σ l implies degx πk = degx πl for all
k, l ∈ {1, . . . , r}. Moreover, the automorphisms in AutF(A) are in general not uniquely
determined by their induced permutation, see also [4, Sec. 3].

Having this description of the ring A and its automorphisms available we will now fix
some σ ∈ AutF(A) and turn to the Piret algebra A[z;σ]. We will give some basic properties.
Details can be found in [4].

Using 1 = ε(1) + . . .+ ε(r) we can write each polynomial f ∈ A[z;σ] in the form

f = f (1) + . . .+ f (r), where f (k) := ε(k)f.

We call f (k) the k-th component of f . Furthermore, the set Tf :=
{
k ∈ {1, . . . , r}

∣∣ f (k) 6= 0
}

is called the support of f . Each f ∈ A[z;σ] can be written as an A-linear combination of the
elements

zµε(l), µ ≥ 0, l = 1, . . . , r. (2.11)

We call these elements the monomials of A[z;σ]. From (2.4) and Definition 2.3 it is clear
that the monomials of the k-th component f (k) of f are not in ε(k)A but rather move around
the fields ε(l)A where l ≡σ k.

Example 2.4 Consider again the situation of Example 2.2 where F = F2, n = 7 and σ(x) =
x5. The polynomial x7−1 decomposes into x7−1 = π1π2π3 where π1 = x+1, π2 = x3+x+1,
and π3 = x3 + x2 + 1. Furthermore, one has the primitive idempotents

ε(1) = 1 + x+ x2 + x3 + x4 + x5 + x6, ε(2) = 1 + x+ x2 + x4, ε(3) = 1 + x3 + x5 + x6,

which can easily be checked by verifying (ε(k) modπi) = δik for i, k = 1, 2, 3. Moreover,
σ(ε(1)) = ε(1), σ(ε(2)) = ε(3), σ(ε(3)) = ε(2). In other words, σ induces the permutation

9

Πσ = (1)(2, 3). It can be shown straightforwardly that the polynomial g given in (2.6)
satisfies ε(1)g = ε(2)g = 0 and ε(3)g = g, thus g = g(3). Furthermore, g = ε(3)(1 + x + x2) +
zε(2)x+ z2ε(3)x, showing how the coefficients switch between ε(3)A and ε(2)A.

At this point we want to introduce the following notions which will come in very handy
later on.

Definition 2.5 Let g ∈ A[z;σ].

(a) g is called a component polynomial if g = g(k) for some k = 1, . . . , r, i. e., if |Tg| ≤ 1.
(b) g is called unmixed if k 6≡σ l for all k, l ∈ Tg where k 6= l.

A component polynomial is always unmixed. As for the notion of unmixedness observe that
each component g(k) of an arbitrarily given polynomial g ∈ A[z;σ] satisfies

g(k) ∈ span A{zµε(k
′) | µ ≥ 0, k′ ≡σ k}.

Therefore, in an unmixed polynomial g no nonzero terms of different components are left
A-multiples of the same monomial zµε(l). Roughly speaking, the components do not overlap.

Example 2.6 With the data as in Example 2.4 the polynomial f := ε(1) + ε(2) + zε(3) is
unmixed since ε(1)f = ε(1), ε(2)f = ε(2) + zε(3), and ε(3)f = 0. Thus Tf = {1, 2} and we have
1 6≡σ 2. The polynomial f ′ := ε(2) + zε(2) is not unmixed since Tf ′ = {2, 3} and 2 ≡σ 3.

Unmixed polynomials form a very important special case of so called reduced polynomials
as they have been defined in [4, Def. 4.9(b)]. In that paper a Gröbner-type theory has
been established for the Piret algebra A[z;σ]. It is based on the monomials given in (2.11)
and leads to a reduction algorithm and unique reduced generating sets for left ideals just
like for commutative polynomials in several variables. Since we will not need the notion
of reducedness directly, we do not want to repeat the (straightforward) definition here but
rather want the reader to have the following in mind. It is a direct consequence of the given
definitions.

Remark 2.7 Unmixed polynomials as well as constant polynomials are reduced in the sense
of [4, Def. 4.9(b)].

In the sequel we will have to make use of the following results from [4].

Theorem 2.8 Fix σ ∈ AutF(A).

(1) Let C ⊆ F[z]n be a σ-CCC. Then there exists a reduced polynomial g ∈ A[z;σ] such that

p(C) =
•〈 g 〉 := {fg | f ∈ A[z;σ]}.

In particular, the left ideal p(C) is principal. Moreover, the polynomial g is unique up
to left multiplication by units in A, and the support of g satisfies Tg = Tg0 , where g0
denotes the constant part of g.

10

(2) Let g ∈ A[z;σ] be a reduced polynomial. Then v(
•〈 g 〉) ⊆ F[z]n is a direct summand of

F[z]n (thus a σ-cyclic convolutional code) if and only if

g =
∑
l∈Tg

u(l) for some unit u ∈ A[z;σ] (2.12)

That is, the reduced generator polynomials of σ-CCC’s consist of some of the components
of suitable units.

(3) Let g ∈ A[z;σ] be a reduced polynomial with support Tg and let S = v(
•〈 g 〉) ⊆ F[z]n.

For l ∈ Tg let degx πl = κl, where πl is as in (2.7), and put κ :=
∑

l∈Tg
κl. Then the

matrix
G :=

[
v
(
xig(l)

)]
l∈Tg , i=0,...,κl−1

∈ F[z]κ×n (2.13)

is a minimal generator matrix of the submodule S. As a consequence, S is a submodule
of rank κ and complexity δ :=

∑
l∈Tg

κl degz g
(l). The Forney indices are given by the

numbers degz g
(l), l ∈ Tg, each one counted κl times.

Proof: Part (1) is [4, Thm. 4.5, Cor. 4.13(b)] while part (3) is in Thm. 7.13 of the same
paper. As for part (2) we obtain from [4, Prop .7.10] that v(

•〈 g 〉) is a direct summand if and
only if gv = g0 for some unit v ∈ A[z;σ]. Now put u =

(
g0 +

∑
l 6∈Tg0

ε(l)
)
v−1. Then u is a

unit since the first factor is a unit due to (2.9). It is easy to see that g satisfies (2.12). 2

It is worth mentioning that A[z;σ] is not a left principal ideal ring. Part (1) above only
states that left ideals associated to direct summands in F[z]n are principal. Indeed, there
exist left ideals that are not principal [4, Exa. 4.6(a)]. Moreover, we want to emphasize that,
according to (3), the algebraic parameters of σ-cyclic convolutional codes can occur only
in certain combinations. In particular, the Forney indices appear, in general, with higher
multiplicities, depending on the degrees of the prime factors πl. In the next sections we will
investigate this situation in more detail.

We illustrate the results above by continuing the examples given earlier.

Example 2.9 Let us return once more to Example 2.2 and its continuation in Example 2.4.
In that case the polynomial g = g(3) is a component polynomial and thus reduced by Re-
mark 2.7. As shown explicitly in Example 2.2 it generates a left ideal corresponding to a code
of rank 3 and complexity 6. This is compliant with what has been stated in Theorem 2.8(3).
Furthermore, one can show that the polynomial u = 1+x+x2+z(1+x+x2+x6)+z2(1+x+
x4+x6) is a unit in A[z;σ] with inverse u−1 = 1+x2+x3+x6+z(x+x2)+z2(1+x2+x5+x6),
and that g = u(3), illustrating Theorem 2.8(2). We do not discuss how to obtain the unit u
from the given reduced polynomial g since that needs more detailed results from [4].

We close this section with an additional comment concerning the two different module
structures used in Definition 2.1(2) of σ-CCC’s. As it turns out from the previous results
that definition can be expressed in simpler terms. Since this will not be needed throughout
the paper, we will only sketch the reformulation in the following remark.

Remark 2.10 Let I be a left ideal in A[z;σ]. Then I is a direct summand of the left F[z]-
module A[z;σ] if and only if I is a direct summand of the ring A[z;σ]. Hence, the set of

11

σ-CCC’s is the same as the set of direct summands of the ring A[z;σ]. In particular, a
σ-CCC has a direct complement which is σ-cyclic, too. All this can be derived by using
Theorem 2.8(2). Indeed, one can easily show that a direct complement of

•〈 g 〉, where g is
as in (2.12), is given by the left ideal generated by g′ :=

∑
l 6∈Tg

u(l). In this context it is
also worth recalling that in every ring R with 1 a left ideal I that is a direct summand is
left principal and even has an idempotent generator. We wish to emphasize that reduced
generator polynomials, as guaranteed by Theorem 2.8(1), are in general not idempotent.
But the above shows how idempotent generators can easily be obtained from the reduced
generator. Indeed, we have that g + g′ = u is a unit in A[z;σ]. Thus 1 = u−1g + u−1g′

and u−1gu−1g′ = u−1g − u−1gu−1g ∈ •〈 g 〉 ∩ •〈 g′ 〉 = {0}. From this it follows that both
terms u−1g and u−1g′ are idempotent generators of the respective left ideal. In general,
these idempotent generators have much higher degree than the reduced ones. At any rate,
as Theorem 2.8(3) shows, the reduced generators are the more useful ones when it comes to
the associated module in F[z]n.

3 Minimal Cyclic Codes

As before let F be a finite field such that n and |F| are coprime and let σ ∈ AutF(A) be a fixed
automorphism, where A is as in (2.2). In this section we will investigate the building blocks
of σ-CCC’s, i. e., the minimal CCC’s. We will derive necessary and sufficient conditions for
the automorphism σ to allow for σ-cyclic codes with arbitrarily prescribed Forney indices.

As we saw in Theorem 2.8(1) each σ-cyclic convolutional code C ⊆ F[z]n corresponds
to a principal left ideal in A[z;σ] which is generated by a reduced polynomial. Moreover,
since according to the same result the reduced polynomial is unique up to constant units, the
following definition is well-posed.

Definition 3.1 Let g ∈ A[z;σ] be a reduced polynomial. Then its support Tg is called the
support of the left ideal

•〈 g 〉 and also the support of the submodule v(
•〈 g 〉).

Furthermore, part (3) of Theorem 2.8 shows that each σ-cyclic convolutional code can be pre-
sented as the direct sum of σ-cyclic codes with component polynomials as generator polynomi-
als. Indeed, we consider first the case where g = g(l) for some l. Then, using the theorem and
applying the isomorphism p to the identity S = imG we derive

•〈 g 〉 = p
(
im [v(xig)]i=0,...,κl

)
.

From this and the full rank of the matrix G in (2.13) it follows that in the general case, where
g =

∑
l∈Tg

g(l) is reduced, Equation (2.13) translates into the direct sum

•〈 g 〉 =
⊕
l∈Tg

•〈 g(l) 〉 (3.1)

of left ideals in A[z;σ]. All this leads to the following definition.

Definition 3.2 Let {0} 6= C ⊆ F[z]n be a σ-cyclic convolutional code with reduced generator
polynomial g ∈ A[z;σ]. Then C is called minimal if g is a component polynomial, i. e., if
g = ε(l)g for some l = 1, . . . , r or, alternatively, if |Tg| = 1.

12

Thus, by Equation (3.1) each σ-cyclic convolutional code is a direct sum of minimal σ-cyclic
codes. As can be seen by some examples the decomposition into a direct sum of minimal
codes is not unique. However, we will not need this property and thus omit an example.
The notion “minimal” (which is not related to minimal generator matrices) is justified by the
following result.

Proposition 3.3 Let C ⊆ F[z]n be a σ-cyclic convolutional code with generator polynomial
g ∈ A[z;σ]. Then the following are equivalent.

(i) C is minimal,

(ii) C 6= {0} and C does not contain any proper σ-cyclic subcodes. Precisely, if Ĉ is a σ-cyclic
convolutional code and {0} 6= Ĉ ⊆ C, then Ĉ = C.

(iii) There exists a unit u ∈ A[z;σ] such that g = u(l) for some index l.

Proof: (i) ⇒ (ii): By assumption 0 6= g = g(l) for some index l. Let {0} 6= Ĉ be a
σ-cyclic convolutional code with reduced generator polynomial h 6= 0 and let Ĉ ⊆ C. Then
•〈h 〉 ⊆ •〈 g 〉, thus h = fg for some f ∈ A[z;σ]. This implies the identity h0 = f0g0 for
the constant terms of the polynomials. From Theorem 2.8(1) we know g0 = g

(l)
0 6= 0, hence

h0 = f0ε
(l)g0 = h

(l)
0 . Using again Theorem 2.8(1) we deduce Th = Th0 = {l}. Thus h = h(l)

and by Theorem 2.8(3) the codes Ĉ and C have the same rank. From Lemma 1.3 we conclude
Ĉ = C.
(ii) ⇒ (i): follows directly from Theorem 2.8(3) or Equation (3.1) since each component of
the generator polynomial results in a σ-cyclic subcode of C.
The equivalence (i) ⇔ (iii) is clear with Theorem 2.8(2). 2

In the sequel we will show which algebraic parameters (n, k, δ) a minimal σ-cyclic con-
volutional code can attain. From Theorem 2.8(3) and Proposition 3.3 we have the following
situation.

Remark 3.4 (a) Any component u(l) of a unit u ∈ A[z;σ] defines a minimal σ-cyclic code
v(

•〈u(l) 〉) with parameters (n, k, dk) where k = degx πl and d = degz u
(l).

(b) Any minimal σ-cyclic code in F[z]n with support {l} has parameters (n, k, dk) and Forney
index d counted k times, where k = degx πl and d is the degree of the l-th component of
a unit in A[z;σ].

Hence the question raised above amounts to investigating as to which degrees can occur for
a given component of a unit in A[z;σ]. The case where the complexity is zero is, of course,
known from block code theory. Indeed, for each k ∈ {degx π1, . . . ,degx πr} there exists a
cyclic block code with parameters (n, k), hence a σ-cyclic convolutional code with parameters
(n, k, 0) for any automorphism σ. This follows also immediately from Remark 3.4(a). The
existence of σ-cyclic convolutional codes with nonzero complexity, however, implies certain
relations between the parameters and the automorphism. Indeed, we have

Lemma 3.5 Let C ⊆ F[z]n be a minimal σ-cyclic code with generator polynomial g = g(l).
Then C has complexity zero if and only if g = gε(l). Furthermore, if C has nonzero complexity
then σ

(
ε(l)

)
6= ε(l).

13

Proof: First of all, the polynomial g is reduced by Remark 2.7, thus we may apply The-
orem 2.8. If C has complexity zero, then, by Theorem 2.8(3), the polynomial g has degree
zero, thus g ∈ A. But then g = ε(l)g = gε(l) follows from commutativity of A. Conversely,
g = ε(l)g = gε(l) implies

•〈 g 〉 ⊆ •〈 ε(l) 〉 and thus C ⊆ v(
•〈 ε(l) 〉). Both submodules are direct

summands and by virtue of Theorem 2.8(3) they have the same rank. Thus, Lemma 1.3
implies C = v(

•〈 ε(l) 〉) and therefore has complexity zero (again by Theorem 2.8(3)). As for
the last assertion notice that if σ(ε(l)) = ε(l), the very definition of multiplication in the Piret
algebra implies that ε(l) is in the center of A[z;σ]. Hence in this case g = ε(l)g = gε(l) and
the code has complexity zero by the first part of the lemma. 2

As a consequence we have that for fixed parameters n and |F| a given automorphism
σ ∈ AutF(A) admits (minimal) σ-cyclic convolutional codes of positive complexity only if the
induced permutation Πσ ∈ Sr (see Definition 2.3) is nontrivial. According to Equation (2.10)
this in turn is possible only if xn − 1 has (at least) two prime factors of the same degree.
Recall that one easily obtains the degrees of the prime factors of xn − 1 by computing the
cyclotomic cosets modulo n over F; see [10, Ch. 7, § 5]. With different methods it has been
shown in [16, Sec. VI] and in [4, Prop. 3.4] that the condition Πσ 6= id is not only necessary
but also sufficient for the existence of σ-cyclic codes with positive complexity. Our goal is
to prove even more. We will show that for any σ ∈ AutF(A) and any l ∈ {1, . . . , r} such
that σ(ε(l)) 6= ε(l) and for any d ∈ N there exists a minimal σ-cyclic code with parameters
(n, k, kd) where k = degx πl. To this aim we need the following notion.

Definition 3.6 Let σ ∈ AutF(A) and l ∈ {1, . . . , r}. Then the l-order of σ is defined as
ol(σ) := min{m ∈ N | σm(ε(l)) = ε(l)}.

Using the permutation Πσ ∈ Sr the l-order can also be expressed as ol(σ) = min{m ∈ N |
Πm

σ (l) = l}. In other words, the l-order of σ is the length of the cycle of Πσ containing l;
therefore

l ≡σ l
′ =⇒ ol(σ) = ol′(σ). (3.2)

With the following lemma we will establish the existence of units in A[z;σ] with a par-
ticularly simple form. They will suffice to show the existence of the desired minimal σ-cyclic
codes. We will also obtain that each unit in A[z;σ] can be expressed as a finite product of
these simple units. In this sense we can construct, at least theoretically, all units of A[z;σ]
and thus, by Theorem 2.8(2), all σ-cyclic convolutional codes.

Lemma 3.7 Let σ ∈ AutF(A) with l-order ol := ol(σ) where l ∈ {1, . . . , r}.
(a) Let a ∈ A and d ∈ N0. Put ud,a,l := 1 + zdaε(l) ∈ A[z;σ]. Then[

ud,a,l is a unit in A[z;σ] ⇐⇒ a(l) = 0 or ol - d
]

if d > 0,

and [
ud,a,l is a unit in A[z;σ] ⇐⇒ a(l) 6= −ε(l)

]
if d = 0.

If ud,a,l is a unit in A[z;σ], then its inverse is given by ud,−a,l. In this case we call ud,a,l

an elementary unit.

(b) Any unit in A[z;σ] can be written as a finite product of elementary units.

14

Proof: (a) If d = 0 then ud,a,l = 1 + a(l) and the assertion follows from (2.9). Thus let
d > 0. We may assume a(l) 6= 0 for otherwise the assertion is trivial.
“⇒” Write u := ud,a,l, for short. Since u is a unit, we know from Remark 3.4(a) that v(

•〈u(l) 〉)
is a minimal σ-cyclic convolutional code and its complexity is given by degx πl degz u

(l). If
ol | d then ε(l)zd = zdε(l), and thus u(l) = ε(l)u = uε(l) = ε(l) + zda(l), hence degz u

(l) =
d > 0. But on the other side Lemma 3.5 implies that the complexity of v(

•〈u(l) 〉) is zero, a
contradiction.
“⇐” Let ol - d. Then σd(ε(l)) 6= ε(l) and thus σd(ε(l))ε(l) = 0. But then

ud,a,lud,−a,l = (1 + zdaε(l))(1− zdaε(l)) = 1,

and likewise ud,−a,lud,a,l = 1, completing the proof of (a).
(b) Let u ∈ A[z;σ] be a unit. Then

•〈u 〉 = A[z;σ] and thus the constant polynomial 1 ∈ A is
a reduced generator polynomial of

•〈u 〉, see Remark 2.7. In [4, Cor. 4.13(a) and its proof] it
has been shown that the reduction of a single polynomial in A[z;σ] can be described by left
multiplication with suitable elementary units. In other words, there exist elementary units
u1, . . . , ut ∈ A[z;σ] such that 1 = ut · . . . · u1u. This proves the assertion. 2

It should be noticed that from a coding theoretic point of view the elementary units are
not desirable for code construction if d is big. Indeed, since the coefficients of z, z2, . . . , zd−1

are zero, the same is true for the coefficients of any component u(l) and thus the code v(
•〈u(l) 〉)

has small distance. This argument, of course, does not apply if d = 1, and we will proceed
with that more specific case. These units are not only candidates for the construction of good
codes but, as we will see next, will lead us to the existence of the desired minimal σ-cyclic
codes. To this end we will now construct units whose l-th component have a prescribed
degree.

Corollary 3.8 Let σ ∈ AutF(A) and l ∈ {1, . . . , r} such that σ(ε(l)) 6= ε(l). Then

(1) For any a ∈ A and any i ∈ N0 the element ua(i) := 1 + zaσi(ε(l)) is an elementary unit
in A[z;σ]. Its inverse is given by u−a(i).

(2) For any d ∈ N0 and any units a1, . . . , ad in A the polynomial u := ua1(1) · . . . · uad
(d) is

a unit in A[z;σ] and satisfies degz u
(l) = d = degz u.

Proof: (1) If degz ua(i) = 0 the assertion is trivial. Thus let us assume degz ua(i) = 1. Note
that, with the notation of Lemma 3.7, ua(i) = u1,a,l′ where l′ is such that σi(ε(l)) = ε(l

′).
From (3.2) we obtain ol(σ) = ol′(σ) and by assumption this number is bigger than 1. Thus
ol′(σ) - degz ua(i) and Lemma 3.7(a) implies the assertion.
(2) Without loss of generality let d > 0. Let u := ua1(1) · . . . · uad

(d) where a1, . . . , ad are
units in A. Part (a) implies that u is a unit in A[z;σ] and it obviously satisfies degz u ≤ d.
In order to show degz u = d we compute the zd-term of u. It is given by(

za1σ(ε(l))
)
·
(
za2σ

2(ε(l))
)
· . . . ·

(
zadσ

d(ε(l))
)

= zd
(
σd−1(a1)σd−2(a2) · . . . · σ(ad−1)ad

)(
σd(ε(l)) · . . . · σd(ε(l))

)
= zdaσd(ε(l)),

where a := σd−1(a1)σd−2(a2) · . . . · σ(ad−1)ad. Since a1, . . . , ad are units in A, the same
is true for a. Thus aσd(ε(l)) 6= 0 and we have degz u = d. Finally, degz u

(l) = d since
ε(l)zdaσd(ε(l)) = zdaσd(ε(l)) 6= 0. 2

15

We would like to mention that for the unit u thus constructed degz u
(l′) < d whenever l′ 6= l.

This can easily be seen from the above.

The following theorem combines our findings about the existence of minimal σ-cyclic
convolutional codes. The proof follows from Corollary 3.8(2) along with Remark 3.4(a) and
from Lemma 3.5.

Theorem 3.9 Let σ ∈ AutF(A) and l ∈ {1, . . . , r}. Put k := degx πl where πl is as in (2.7).
Then the following are equivalent:

(i) σ(ε(l)) 6= ε(l).

(ii) For any d ∈ N0 one can construct a minimal σ-cyclic convolutional code with parameters
(n, k, dk) and support {l}. The Forney indices of the code are all equal to d.

(iii) There exists a σ-cyclic convolutional code with nonzero complexity and support {l}.

Notice that the considerations so far do not lead to any insight about the quality of a
minimal σ-cyclic convolutional code, that is, about the distance. In a forthcoming paper
we will use the units of Corollary 3.8 in order to construct CCC’s with parameters (n, 1, δ),
where δ ≤ n − 1, that are all MDS, i. e., the distances of these codes attain the generalized
Singleton bound given in (1.2). In the rest of this section we will restrict ourselves to pre-
senting examples of several 2-dimensional codes using the ideas above. They are all optimal
(i. e., their distances attain the Griesmer bound) suggesting that this construction is worth
being investigated with respect to distance properties. As for the general situation, we wish
to add that the codes constructed in Theorem 3.9(ii) are compact, which in this case (rank k
dividing the complexity) means that the Forney indices are all the same [12, Cor. 4.3]. In
general, compact codes are better candidates for good codes; for instance, codes attaining
the generalized Singleton bound (1.2) are always compact [19, Proof of Thm. 2.2].

Example 3.10 We begin with the case n = 3 and F := F4 = {0, 1, α, α2} where α2 +α+1 =
0. Thus A = F[x]/〈x3 − 1〉 and we have the prime factor decomposition x3 − 1 = π1π2π3

where π1 = x + 1, π2 = x + α, and π3 = x + α2. The corresponding primitive idempotents
are

ε(1) = x2 + x+ 1, ε(2) = αx2 + α2x+ 1, ε(3) = α2x2 + αx+ 1

as can readily be seen by verifying (ε(i) modπj) = δij for i, j = 1, 2, 3. We will use the
automorphism σ ∈ AutF(A) defined by σ(x) = x2. One easily checks σ(ε(2)) = ε(3) and vice
versa. Hence Πσ = (1)(2, 3). We will construct minimal σ-cyclic codes with support {2} by
using the construction of units in Corollary 3.8 for l = 2. Choose the units

v1 = u1(1), v2 = uα(2), v3 = uα2(3), v4 = uα(4), v5 = uα2(5), v6 = uα(6) ∈ A[z;σ]

and put gδ := ε(2)(v1 · . . . · vδ) for δ = 1, . . . , 6. From Corollary 3.8(2) we obtain degz gδ = δ
and thus Cδ := v(

•〈 gδ 〉) is a σ-cyclic code with parameters (3, 1, δ) over F4. Using Maple we
computed the distances of these codes which turn out to be very good in each case. Indeed,
the respective distances are

dist(C1)=6, dist(C2)=9, dist(C3)=12, dist(C4)=14, dist(C5)=16, dist(C6)=18.

16

For δ = 1, . . . , 5 the distances attain the Griesmer bound (1.3), hence these codes are optimal
(for δ = 1, 2, 3 this is even the generalized Singleton bound (1.2)). For δ = 6 the computed
distance is just one less than the Griesmer bound, which in this case is 19. It should be
added that, as to our knowledge, it is unknown whether there exists any code over F4 with
algebraic parameters (3, 1, 6) and distance 19. Recall from Theorem 2.8(3) that Gδ := v(gδ)
is a generator matrix of Cδ. These matrices are given explicitly by

G1 = [z + 1, αz + α2, α2z + α],

G2 = [αz2 + z + 1, z2 + αz + α2, α2z2 + α2z + α],

G3 = [z3 + αz2 + αz + 1, αz3 + z2 + α2z + α2, α2z3 + α2z2 + z + α],

G4 = [αz4 + z3 + z2 + αz + 1, z4 + αz3 + α2z2 + α2z + α2, α2z4 + α2z3 + αz2 + z + α],

G5 = [z5 + αz4 + αz3 + z2 + z + 1, αz5 + z4 + α2z3 + α2z2 + αz + α2,
α2z5 + α2z4 + z3 + αz2 + α2z + α],

G6 = [αz6 + z5 + z4 + αz3 + α2z2 + z + 1, z6 + αz5 + α2z4 + α2z3 + αz2 + αz + α2,
α2z6 + α2z5 + αz4 + z3 + z2 + α2z + α].

Example 3.11 Now we consider the case n = 5 and F = F4 = {0, 1, α, α2}. In this case
x5 − 1 = π1π2π3 where π1 = x + 1, π2 = x2 + αx + 1, and π3 = x2 + α2x + 1 and the
corresponding primitive idempotents are

ε(1) = x4+x3+x2+x+1, ε(2) = αx4+α2x3+α2x2+αx, ε(3) = α2x4+αx3+αx2+α2x.

We choose the automorphism defined via σ(x) = x2. Again it is easily seen that σ(ε(2)) = ε(3)

and vice versa. We will use Corollary 3.8 for l = 2 in order to construct minimal σ-cyclic
codes with support {2}. We define

v1 := u1(1), v2 := uα(2), v3 := uα2(3)

and put gm := ε(2)v1 · . . . · vm for m = 1, 2, 3. Then we know degz gm = m and that
Cm := v(

•〈 gm 〉) is a σ-cyclic code over F4 with parameters (5, 2, 2m) for m = 1, 2, 3. Again
we computed the distances and they are optimal in each case. Indeed, dist(C1) = 8, dist(C2) =
12, and dist(C3) = 16, which in each case is the Griesmer bound (1.3) for codes over F4 with
parameters (5, 2, 2m). Theorem 2.8(3) implies that the generator matrix of Cm is made up
by the two rows v(gm) and v(xgm). They are given by

G1 =
[

0 α+ α2z α2 + αz α2 + αz α+ α2z
α+ αz α2z α α2 + α2z α2 + αz

]
,

G2 =
[

0 α+ α2z + α2z2 α2 + αz + z2 α2 + αz + z2 α+ α2z + α2z2

α+ αz + α2z2 α2z + z2 α+ z2 α2 + α2z + α2z2 α2 + αz

]
,

G3 =
[

0 α+z+α2z2+α2z3 α2+α2z+z2+αz3 α2+α2z+z2+αz3 α+z+α2z2+α2z3

α+α2z+α2z2+αz3 z+z2+αz3 α+z2+α2z3 α2+z+α2z2 α2+α2z+α2z3

]
.

17

Remark 3.12 In [3, Table II] some other sequences of codes over F4 with parameters (3, 1, δ)
for δ = 1, . . . , 5 and (5, 2, 2m),m = 1, 2, 3 have been presented. They have the same distances
as the ones given in the previous two examples, hence are also optimal. It is worth pointing
out that those codes and the ones presented here are not monomially equivalent, where we
call two codes imG and imG′ monomially equivalent if G = G′PD where P ∈ Gln(F) is
a permutation matrix and D ∈ Gln(F) is a nonsingular diagonal matrix; see also [5, p.24]
for monomial equivalence in the block code case. In other words, codes are monomially
equivalent if they only differ by a permutation and a rescaling of the entries of the codewords.
Monomially equivalent codes have, of course, the same algebraic parameters and the same
distance. From a coding point of view they have the same properties and can therefore be
identified. From this point of view, the two families of codes obtained in the examples above
are significantly different from those constructed in [3].

4 Orthogonal Sums of Minimal Cyclic Codes

In this section we will extend the existence result from Theorem 3.9 to certain non minimal
σ-cyclic codes. In fact we will generalize that theorem to codes with unmixed generator poly-
nomials. To this end we will make use of the fact that component polynomials corresponding
to disjoint cycles of Πσ are orthogonal. Precisely

f, g ∈ A[z;σ], k 6≡σ l =⇒ f (k)g(l) = g(l)f (k) = 0. (4.1)

Again, let F be a finite field such that |F| and n are coprime and let σ ∈ AutF(A) be a
fixed automorphism. We will make heavy use of the prime factor decomposition (2.7) and
the notations introduced in Definition 2.3.

Lemma 4.1 Let l1, . . . , lt ∈ {1, . . . , r} be such that li 6≡σ lj for i 6= j. Furthermore, put
I := {1, . . . , r}\{l | l ≡σ li for some i = 1, . . . , t}.
(1) Let u ∈ A[z;σ] be a unit with inverse u−1 = ū. Then∑

j≡σ li

u(j)
∑
j≡σ li

ū(j) =
∑
j≡σ li

ε(j) for each fixed i = 1, . . . , t

and ∑
j∈I

u(j)
∑
j∈I

ū(j) =
∑
j∈I

ε(j).

(2) For i = 1, . . . , t let ui ∈ A[z;σ] be a unit with inverse u−1
i = ūi and let u ∈ A[z;σ] be a

unit with inverse u−1 = ū. Then the element w :=
∑t

i=1

∑
j≡σ li

u
(j)
i +

∑
j∈I u

(j) is a unit

with inverse w−1 =
∑t

i=1

∑
j≡σ li

ū
(j)
i +

∑
j∈I ū

(j).

Proof: (1) The implication in (4.1) yields

uū =
t∑

i=1

(∑
j≡σ li

u(j)
∑
j≡σ li

ū(j)
)

+
∑
j∈I

u(j)
∑
j∈I

ū(j) = 1 =
r∑

j=1

ε(j).

18

From this the assertion follows immediately since the coefficients of each of the first t sum-
mands are contained in

∑
j≡σ li

ε(j)A while those of the second sum are in
∑

j∈I ε
(j)A and

these two sets have only the zero element in common.
(2) follows from (1) along the same line of arguments. 2

All this leads to the existence of units with prescribed degrees for pairwise orthogonal
components (in the sense of (4.1)).

Theorem 4.2 Let l1, . . . , lt ∈ {1, . . . , r} be such that li 6≡σ lj for i 6= j. Furthermore assume
oli(σ) > 1, that is, σ(ε(li)) 6= ε(li), for all i = 1, . . . , t. Then for all d1, . . . , dt ∈ N0 there exists
a unit w ∈ A[z;σ] such that g :=

∑t
i=1w

(li) is unmixed and degz g
(li) = di for i = 1, . . . , t.

Proof: From Corollary 3.8(2) we know that for each i = 1, . . . , t there exists a unit ui such
that degz u

(li)
i = di. Put w :=

∑t
i=1

∑
j≡σ li

u
(j)
i +

∑
i∈I u

(i)
1 , where again I = {1, . . . , r}\{l |

l ≡σ li for some i = 1, . . . , t}. Then Lemma 4.1(2) yields the desired results. 2

Using Theorem 2.8(3) we obtain immediately the existence of orthogonal sums of minimal
cyclic codes with prescribed Forney indices.

Corollary 4.3 Let l1, . . . , lt ∈ {1, . . . , r} be such that li 6≡σ lj for i 6= j and such that
oli(σ) > 1 for all i = 1, . . . , t. Put ki := degx πli where πj is as in (2.7). Then for all
d1, . . . , dt ∈ N0 there exists a σ-cyclic code C ⊆ F[z]n with parameters (n, k, δ) where

k =
t∑

i=1

ki and δ =
t∑

i=1

kidi.

The support is given by {l1, . . . , lt}.

Note that according to Theorem 2.8(3), any σ-cyclic code with support {l1, . . . , lt} has
to have parameters of the type above.

The arguments above may be used to construct non-minimal codes with given algebraic
parameters and an unmixed generator polynomial directly out of minimal codes. We formu-
late the result in terms of direct summands in F[z]n.

Theorem 4.4 For i = 1, . . . , t let Ci ⊆ F[z]n be a minimal σ-cyclic code with support {li}
and complexity δi and assume li 6≡σ lj for i 6= j. Then C :=

∑t
i=1 Ci ⊆ F[z]n is a σ-cyclic

code, too. Its rank is given by rank C =
∑t

i=1 rank Ci =
∑t

i=1 degx πli , and its complexity is
δ(C) = δ1 + . . .+ δt. Furthermore, C =

⊕t
i=1 Ci and its Forney indices are given by the union

of the Forney indices of the codes C1, . . . , Ct.

Proof: For all i = 1, . . . , t let Ci = v(
•〈 gi 〉) where gi = u

(li)
i for some unit ui ∈ A[z;σ]. Put

g := g1 + . . .+ gt and C := v(
•〈 g 〉). Then the polynomial g is unmixed and by Lemma 4.1(2)

g =
∑t

i=1w
(li) for some suitable unit w ∈ A[z;σ]. Hence, by Theorem 2.8(2), the submod-

ule C = v(
•〈 g 〉) is a direct summand, and by part (3) of that theorem it is the direct sum of

C1, . . . , Ct and has the desired rank, complexity, and Forney indices. 2

We wish to illustrate the above by an example, indicating that this construction does
indeed lead to good codes.

19

Example 4.5 Let n = 7 and F = F8 = {0, 1, α, α2, . . . , α6} where α3 + α + 1 = 0. Then
x7 − 1 =

∏6
i=0 πi, where πi = x − αi. Since all fields F[x]/〈πi〉 are isomorphic to F8, the

automorphisms on A = F[x]/〈x7 − 1〉 are fully determined by the their induced permutation

Πσ. In other words, AutF(A) ∼= S7. We choose the automorphism σ corresponding to the
permutation Πσ = (1, 2)(3, 4, 5)(6)(7). Moreover, we take the polynomials

g1 = ε(1) + zε(2) + z2ε(1)α and g2 = ε(3) + zε(4)α+ z2ε(5)α2.

Then g1 = ε(1)g1 and g2 = ε(3)g2. Since both polynomials, being components, are reduced,
Theorem 2.8(3) tells us that

•〈 g1 〉 and
•〈 g2 〉 are submodules of rank 1 and complexity 2

each. It can be checked via some tedious but straightforward calculation that the associated
matrices v(gi) are right invertible (they are the rows of the matrix below), thus v(

•〈 g1 〉) and
v(

•〈 g2 〉) are both direct summands of F8[z]7. Hence they are σ-cyclic codes over F8 with
parameters (7, 1, 2) each. Since 1 6≡σ 3 the polynomial g = g1 + g2 is unmixed and

•〈 g 〉
is a direct summand according to Theorem 4.4. A minimal generator matrix of the code
v(

•〈 g 〉) ⊆ F8[z]7 is given by[
1+z+αz2 1+α6z+αz2 1+α5z+αz2 1+α4z+αz2 1+α3z+αz2 1+α2z+αz2 1+αz+αz2

1+αz+α2z2 α5+α5z+α5z2 α3+α2z+αz2 α+α6z+α4z2 α6+α3z+z2 α4+z+α3z2 α2+α4z+α6z2

]
.

The first and second row generate the codes v(
•〈 g1 〉) and v(

•〈 g2 〉). Again, all codes involved
are optimal with respect to their distance. Both the codes v(

•〈 gi 〉), i = 1, 2, have distance 21,
which is the generalized Singleton bound (1.2). Hence these codes are MDS codes in the sense
of [19]. The code v(

•〈 g 〉) has distance 18, which is the optimum value for codes over F8 with
parameters (7, 2, 4) due to the Griesmer bound (1.3).

Finally we wish to add that the existence result of Corollary 4.3 does not hold without the
restriction li 6≡σ lj for i 6= j. More precisely, in general it is not possible to arbitrarily prescribe
the degrees of the components of a reduced, but not unmixed, polynomial. For instance, one
can show that in the situation of Example 3.11 no σ-CCC with algebraic parameters (5, 4, 2)
exists. In this case one has to make detailed use of the definition of reducedness as given
in [4].

5 Open Problems

We close the paper with some problems open to future research. As indicated at the end
of the last section, in the general situation it remains open as to which Forney indices (and
complexity) a σ-cyclic code can attain. But from a coding theoretic point of view an in-
vestigation of σ-cyclic codes with respect to their distance is much more important. More
precisely, it needs to be investigated whether one can relate the distance of a CCC to some
properties of the reduced generator polynomial (or any other suitable generating polynomial
of the associated left ideal). As a starting point one might begin with minimal codes. In
particular we think it is worth to investigate the construction of minimal codes via units as
described in Corollary 3.8(2). As indicated earlier, in a forthcoming paper we will present a
construction of 1-dimensional (thus minimal) cyclic MDS codes using the ideas of Section 3.
Furthermore, it is also unclear which automorphisms should be chosen for obtaining good

20

codes. Finally, the class of all CCC’s of a given length should be investigated with respect
to monomial equivalence in the sense given in Remark 3.12. First ideas can be found in [9].
They indicate that one may restrict to certain automorphisms in order to cover all equiva-
lence classes. A detailed positive result would considerably reduce the amount of data to be
investigated for the search of good CCC’s.

Acknowledgement

We wish to thank the anonymous reviewers for their helpful comments. They improved the
exposition considerably.

References

[1] G. D. Forney Jr. Convolutional codes I: Algebraic structure. IEEE Trans. Inform. The-
ory, IT-16:720–738, 1970. (see also corrections in IEEE Trans. Inf. Theory, vol. 17,1971,
p. 360).

[2] G. D. Forney Jr. Minimal bases of rational vector spaces, with applications to multi-
variable linear systems. SIAM J. on Contr., 13:493–520, 1975.

[3] H. Gluesing-Luerssen and W. Schmale. Distance bounds for convolutional codes
and some optimal codes. Preprint 2003. Submitted. Available at http://front.math.
ucdavis.edu/ with ID-number RA/0305135.

[4] H. Gluesing-Luerssen and W. Schmale. On cyclic convolutional codes. Acta Applicandae
Mathematicae, 82:183–237, 2004.

[5] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge
University Press, Cambridge, 2003.

[6] R. Johannesson and K. S. Zigangirov. Fundamentals of Convolutional Coding. IEEE
Press, New York, 1999.

[7] J. Justesen. New convolutional code constructions and a class of asymptotically good
time-varying codes. IEEE Trans. Inform. Theory, IT-19:220–225, 1973.

[8] J. Justesen. Algebraic construction of rate 1/ν convolutional codes. IEEE Trans. Inform.
Theory, IT-21:577–580, 1975.

[9] B. Langfeld. Minimal cyclic convolutional codes. Diploma Thesis at the Univer-
sity of Oldenburg (Germany). Available at http://www-m9.ma.tum.de/dm/homepages/
langfeld/thesis.pdf, 2003.

[10] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-
Holland, 1977.

[11] J. L. Massey, D. J. Costello, and J. Justesen. Polynomial weights and code constructions.
IEEE Trans. Inform. Theory, IT-19:101–110, 1973.

21

[12] R. J. McEliece. The algebraic theory of convolutional codes. In V. Pless and W. Huffman,
editors, Handbook of Coding Theory, Vol. 1, pages 1065–1138. Elsevier, Amsterdam,
1998.

[13] P. Piret. On a class of alternating cyclic convolutional codes. IEEE Trans. Inform.
Theory, IT-12:64–69, 1975.

[14] P. Piret. Structure and constructions of cyclic convolutional codes. IEEE Trans. Inform.
Theory, IT-22:147–155, 1976.

[15] J. M. M. Porras, J. A. D. Pérez, J. I. I. Curto, and G. S. Sotelo. Convolutional Goppa
codes. Preprint 2003. Available at http://front.math.ucdavis.edu/ with ID-number
OC/0310149.

[16] C. Roos. On the structure of convolutional and cyclic convolutional codes. IEEE Trans.
Inform. Theory, IT-25:676–683, 1979.

[17] J. Rosenthal. Connections between linear systems and convolutional codes. In B. Marcus
and J. Rosenthal, editors, Codes, Systems, and Graphical Models, pages 39–66. Springer,
Berlin, 2001.

[18] J. Rosenthal, J. M. Schumacher, and E. V. York. On behaviors and convolutional codes.
IEEE Trans. Inform. Theory, IT-42:1881–1891, 1996.

[19] J. Rosenthal and R. Smarandache. Maximum distance separable convolutional codes.
Appl. Algebra Engrg. Comm. Comput., 10:15–32, 1999.

[20] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal. Constructions of MDS-
convolutional codes. IEEE Trans. Inform. Theory, IT-47:2045–2049, 2001.

22

