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Abstract: We will study convolutional codes with the help of state space realizations. It
will be shown that two such minimal realizations belong to the same code if and only if they
are equivalent under the full state feedback group. This result will be used in order to prove
that two codes with positive Forney indices are monomially equivalent if and only if they
share the same adjacency matrix. The adjacency matrix is an invariant of the code obtained
via a minimal state space realization and counts in a detailed way the weights of all possible
outputs. It contains full information about the weights of the codewords in the given code.
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1 Introduction and Preliminaries

In the theory of linear block codes MacWilliams’ Equivalence Theorem [14, 15] tells us that
two block codes are isometric if and only if they are monomially equivalent. Stated more
precisely, codes that are related by a weight-preserving isomorphism differ only by permuta-
tion and rescaling of the coordinates. It is of crucial importance that the weight-preserving
mapping is linear and not just a bijection. Indeed, it is well known that codes with the same
weight enumerator need not be monomially equivalent (unless they are one-dimensional).
In other words, the weight enumerator does not form a complete invariant under monomial
equivalence.

In this paper we will show the somewhat surprising result that for a particular class of
convolutional codes (not encompassing block codes) a certain generalized weight enumerator
does form a complete invariant under monomial equivalence. Thus, two such convolutional
codes are monomially equivalent if and only if the share the same generalized weight enumer-
ator.

This generalized weight enumerator will be an adjacency matrix associated with a weighted
state transition graph of the code and counts in a very detailed and systematic way the
weights of codeword coefficients. It will be introduced in Section 3, and its properties, as
found in [5, 6], will be briefly summarized. All that will indicate that it forms an adequate
generalization of the classical weight enumerator for block codes. The adjacency matrix is
defined via suitable state space realizations of reduced encoders. In this sense, our approach
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follows a series of papers where convolutional codes have been investigated successfully by
system-theoretic methods, see, e. g., [10, 24, 25]. Since for a given code neither the reduced
encoders nor the associated realizations are unique, we will first discuss in detail the rela-
tionship between any two minimal realizations for a given code. This is accomplished in
Section 2 by making use of classical realization theory. It turns out that, in essence, two
minimal realizations belong to the same code if and only if they are equivalent under the full
state feedback group. In Section 3 the weight adjacency matrix associated with a minimal
realization will be introduced. The fact that all minimal realizations of a given code are
feedback equivalent in the sense above will allow us to turn this matrix into an invariant of
the code. Finally, the converse fact, that is, any two feedback equivalent minimal realizations
belong to the same code, will lead us to our main result. It states that two convolutional
codes with positive Forney indices are monomially equivalent if and only if they share the
same adjacency matrix. This result is not true for the class of codes where at least one Forney
index is zero; this, of course, includes block codes.

Before further commenting on our result let us first recall the basic notions of coding
theory. Let F be a finite field. A block code of length n over F is, algebraically, just a
subspace of Fn. A convolutional code of length n is a submodule C of F[z]n of the form

C = im G := {uG
∣∣u ∈ F[z]k}

where G is a basic matrix in F[z]k×n, i. e.

rkG(λ) = k for all λ ∈ F, (1.1)

with F being an algebraic closure of F. We call such a matrix G an encoder, and the number

deg(C) := deg(G) := max{deg(M) | M is a k-minor of G} (1.2)

is said to be the degree of the encoder G or of the code C. It is clear that for two basic matrices
G, G′ ∈ F[z]k×n one has im G = im G′ if and only if G′ = UG for some U ∈ GLk(F[z]). Here
GLk(F[z]) denotes the group of unimodular k × k-matrices over F[z], i. e., matrices with
determinant in F∗ := F\{0}. A matrix G ∈ F[z]k×n is said to be reduced if the sum of its
row degrees equals deg(G), where the degree of a polynomial row vector is defined as the
maximal degree of its entries. For details and characterizations of reducedness see, e. g.,
[3, Main Thm.] or [18, Thm. A.2]. It is well known [3, p. 495] that each convolutional code
admits a reduced encoder. The row degrees of a reduced encoder are, up to ordering, uniquely
determined by the code and are called the Forney indices of the code or of the encoder. It
follows that a convolutional code has a constant encoder matrix if and only if the degree is
zero. In that case the code is, in a natural way, a block code.

Beyond these purely algebraic concepts the most important notion in error-control coding
is certainly the weight. Recall that for a vector v = (v1, . . . , vn) ∈ Fn the (Hamming) weight
is defined to be wt(v) := #{i | vi 6= 0}. For a polynomial vector v =

∑N
j=0 v(j)zj , where

v(j) ∈ Fn, one defines its weight as wt(v) =
∑N

j=0 wt(v(j)). The distance of a (block or
convolutional) code C is defined as dist(C) = min{wt(v) | v ∈ C, v 6= 0}.

Finally we need to introduce the notion of monomial equivalence for convolutional codes.
Motivated by the idea that monomial equivalence should consist of the most obvious trans-
formations that leave invariant all algebraic and coding-theoretically relevant parameters one
arrives at the same notion as for block codes.
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Definition 1.1 Let G, G′ ∈ F[z]k×n be two basic matrices with rank k. We call G, G′

monomially equivalent if there exists a permutation matrix P ∈ GLn(F) and a diagonal
matrix R ∈ GLn(F) such that G′ = GPR. The codes C = im G and C′ = im G′ are said to
be monomially equivalent if G′ = WGPR for some W ∈ GLk(F[z]) and P, R as above. In
other words, there exist monomially equivalent encoder matrices for C and C′.

Notice that we require that, just like for block codes, the rescaling factors (the diagonal
elements of R) are constant rather than polynomials. It is obvious that monomially equivalent
codes have the same dimension, Forney indices, degree, and distance. They also share the
same column distances, extended row distances, and active burst distances. All these are
parameters relevant for the error-correcting quality of the code, see [11, Ch.3], [12], and [8].
Furthermore, the mapping uG 7−→ uGPR is weight-preserving and F[z]-linear and thus
monomially equivalent codes are isometric. The isometry is even degree-preserving. Below
we will address the issue of isometries for convolutional codes in a bit more detail. It should
be observed that, in general, testing whether two codes C = im G and C′ = im G′ of the same
size are monomially equivalent can be quite a formidable task. Indeed, one has to check
whether there exists a unimodular matrix W , a permutation P , and a diagonal matrix R
such that G′ = WGPR. For codes with positive Forney indices our main result provides
an alternative test: the coincidence of the adjacency matrices. It depends on the algebraic
parameters of the codes which way is more efficient.

We want to close the introduction with briefly addressing the issue of isometry for codes.
Recall that two block codes are said to be isometric if there exists a weight-preserving isomor-
phism between them. MacWilliams’ Equivalence Theorem (see, e. g., [9, Thm. 7.9.4]) tells us
that isometry in this sense coincides with monomial equivalence. This theorem became the
cornerstone of the notion of equivalence for block codes and allows us to classify these codes.
Since the discovery of the importance of linear block codes over Z4 for nonlinear codes, the
Equivalence Theorem has enjoyed various generalizations to block codes over certain finite
rings, see for instance the articles [2, 7, 27, 29].

For convolutional codes an intrinsic coding-theoretic classification has not yet been estab-
lished. In other words, it is not yet clear as to when two such codes should be identified.
It is easily seen that the usual notion of isometry (that is, weight-preserving isomorphism)
is too weak in order to yield a reasonable concept of code equivalence. In fact, the block
code C = im (1, 1) is isometric to the (proper) convolutional code C′ = im (z, 1). But these
codes should certainly not be called equivalent as they have completely different algebraic
and coding-theoretic properties. But even if we require, in addition, that the codes share the
same degree, isometry will in general change the coding-theoretic properties. For instance,
the codes

C := im (1, 1 + z) and C′ := im (z, 1 + z)

are isometric with a degree-preserving isomorphism. Hence they have the same degree and
distance. But, again, the codes have different error-correcting capabilities, as can be seen
from their column distances. These distances are refined parameters relevant for error-control
via sequential decoding, see [11, pp. 110]. In this case, the codes have different zeroth column
distances, which simply reflects the fact that the lowest nonzero coefficient of each codeword
in the first code always has weight 2 while for the second code this is 1. As a consequence,
the codes should not be identified.

It should be noticed that in both examples the codes C and C′ are not monomially equiv-
alent in the sense of Definition 1.1. However, they are equivalent under rescaling the first
entry by the factor z.

3



We believe that our main theorem will be helpful in order to establish an appropriate notion
of equivalence for convolutional codes. It should be clear that a reasonable notion should
involve those isometries that leave all error-correcting properties of the code invariant. Since
the adjacency matrix uniquely determines many (if not all) of the parameters characterizing
these properties [5, Sec. 3] we believe that it is reasonable to require that this matrix be
invariant under code equivalence. In this sense our main theorem can be regarded as a
generalization of MacWilliams’ Equivalence Theorem to convolutional codes with positive
Forney indices. However, the result does not tell us how an intrinsic notion of code equivalence
should look like, and we have to leave this open for future research.

2 State Space Descriptions of Reduced Encoders

In this section we will study state space descriptions of convolutional codes and discuss their
non-uniqueness. This section can be regarded as a recollection of certain results from classical
linear systems theory applied to the particular situation of coding theory.

Let us fix a code C = im G and concentrate on the encoding process

G : F[z]k −→ C, u 7−→ v := uG (2.1)

for various choices of the (reduced) encoder G ∈ F[z]k×n. Obviously, the encoding (2.1) can
be interpreted as a dynamical input-output system and thus can be described as a state
space system in the system theoretic sense. In this section we will describe all possible state
space descriptions of a given code C with minimal state space dimension and investigate their
relation to each other. The main issue will be the non-uniqueness of the encoder matrix G.
As we will see later on the considerations of this section can directly be deduced from classical
realization theory. However, the polynomial rather than proper rational setting and the fact
that not the encoder but rather the code is the object under consideration lead to certain
differences, and we consider it worth presenting the results and the differences in some detail.
In addition, we wish to show how, due to the specific form of our transfer matrices, all
assertions can easily be obtained by some matrix algebra. Notice that the results of this
section are true for arbitrary fields F and do not require the finiteness of F.

In order to use standard notation of systems theory it will be most convenient to associate
with a given polynomial matrix G ∈ F[z]k×n the proper rational transfer matrix

TG(z) := G(z−1) ∈ F(z)k×n. (2.2)

Notice that the transfer function TG is polynomial in z−1, or, in other words, TG does not
have any poles in F\{0}. Recall that the McMillan degree δM(T ) of a proper rational matrix
T ∈ F(z)k×n can be defined as δM(T ) := deg(detQ) where

T = Q−1P is a coprime factorization with matrices Q ∈ F[z]k×k, P ∈ F[z]k×n. (2.3)

Coprimeness of the factorization Q−1P simply means that the matrix [Q,P ] is basic. It is
well known that such a factorization always exists (e. g., the Smith-McMillan form), and the
McMillan degree does not depend on the choice of the coprime factorization.

Proposition 2.1 Let G ∈ F[z]k×n be a polynomial matrix and let TG be as in (2.2). Then
δM(TG) ≥ deg(G). Moreover, if G is reduced then δM(TG) = deg(G).
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Proof: Let ν1, . . . , νk be the row degrees of G and put α(G) := max{deg(M) | M minor of G
of any size}. Then obviously

∑k
i=1 νi ≥ α(G) ≥ deg(G), and we have equality at both steps

if and only if G is reduced. From [23, Thm. 2(i)] it is known that δM(TG) = α(G). This
yields the desired results. 2

The last statement of Proposition 2.1 is not an if-and-only-if statement. This can easily
be verified using the matrix G at the end of Remark 2.5 below.

Let us now turn to state space realizations of encoders and recall some well known results
from realization theory as to be found, e. g., in [13, Ch. 6]. First of all, each proper rational
matrix T ∈ F(z)k×n has a realization (A,B, C, D) ∈ Fδ×δ+k×δ+δ×n+k×n. In our setting where
transfer matrices act on the right, see (2.1), this means that T (z) = B(zI − A)−1C + D.
Furthermore, δ ≥ δM(T ), and δ = δM(T ) if and only if (A,B, C, D) is controllable and
observable, that is, rk (λI − AT, BT) = δ = rk (λI − A,C) for all λ ∈ F. Controllable and
observable realizations do always exist. They are unique up to similarity, that is, given any
two such realizations (A,B, C, D) and (Ā, B̄, C̄, D̄) of T then there exists a matrix S ∈ GLδ(F)
such that (Ā, B̄, C̄, D̄) = (SAS−1, BS−1, SC,D).

Assume now that T = TG for some matrix G ∈ F[z]k×n with full row rank. One can show
straightforwardly that any realization (A,B, C, D) of T leads to the equivalence

v = uG ⇐⇒
{

xt+1 = xtA + utB
vt = xtC + utD

for all t ≥ 0
}

where x0 = 0 (2.4)

for any u =
∑

t≥0 utz
t ∈ F[z]k and v =

∑
t≥0 vtz

t ∈ F[z]n, see also [5, Thm. 2.3]. Due to this
interpretation we simply call the quadruple (A,B, C, D) a (state space) system over F. This
gives rise to the following definition.

Definition 2.2 Let (A,B, C, D) ∈ Fδ×δ+k×δ+δ×n+k×n be a system over F.
(1) Let G ∈ F[z]k×n be a polynomial matrix with full row rank. Then (A,B, C, D) is said to

be a realization of order δ of G if

G(z) = B(z−1I −A)−1C + D.

As usual, the system is called canonical if it is controllable and observable.
(2) We call (A,B, C, D) a realization of the code C ⊆ F[z]n if there exists an encoder G ∈

F[z]k×n of C such that (A,B, C, D) is a realization of G. If G is reduced and (A,B, C, D)
is a canonical realization of G, then it is said to be a canonical minimal realization of C.

Since a realization of G is, by definition, a realization of the proper matrix TG in the
system theoretic sense, it follows from the discussion above that each polynomial matrix G
has a realization, and the order of any realization is at least δM

(
TG

)
. Each such G also has a

canonical realization, and a given realization is canonical if and only if its order equals δM

(
TG

)
.

Moreover, each code has a canonical minimal realization; it has order deg(C). However, not
each realization with that order is canonical minimal, see Remark 2.5 and Example 2.7 below.
Let us also note that in the special case where deg(C) = 0, i. e., C is a block code, the matrices
A,B, C of a canonical minimal realization do not exist and D = G, where G is a constant
encoder of C.

We will single out a particularly simple realization of a given encoder. It is a particular
instance of the well-known controller form in systems theory, see, e. g., [1, p. 285].
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Proposition 2.3 Let G ∈ F[z]k×n be a polynomial matrix with rank k and row degrees
ν1, . . . , νk. Put δ :=

∑k
i=1 νi. Let G have rows gi =

∑νi
`=0 gi,`z

`, i = 1, . . . , k, where gi,` ∈ Fn.
For i = 1, . . . , k define the matrices

Ai =

( 0 1
. . .

1
0

)
∈ Fνi×νi , Bi =

(
1 0 · · · 0

)
∈ Fνi , Ci =

gi,1
...

gi,νi

 ∈ Fνi×n.

Then the controller form of G is defined as the matrix quadruple (A,B, C, D) ∈ Fδ×δ×Fk×δ×
Fδ×n × Fk×n where

A =

(
A1

. . .
Ak

)
, B =

(
B1

. . .
Bk

)
, C =

(
C1

...
Ck

)
, D =

( g1,0

...
gk,0

)
= G(0).

In the case where νi = 0 the ith block is missing and in B a zero row occurs. The following
is true.
(i) The controller form (A,B, C, D) forms a controllable realization of the matrix G.

(ii) G is reduced if and only if
( −A C
−B D

)
= δ + k.

(iii) If G is reduced, then the controller form is a canonical realization of G.

Proof: Part (i) is proved in [5, Prop. 2.1] and part (ii) can be checked directly1. Part (iii) is
a consequence of (i) and (ii) since observability means that rk (λI − A,C) = δ for all λ ∈ F.
Due to nilpotency of A this is equivalent to rk (−A,C) = δ, and that follows from (ii). 2

It is well known, and can also straightforwardly be shown, that if the polynomial matrix G
is reduced the controller form is the shift realization in the sense of Fuhrmann [4, Thm. 10-1]
associated with the coprime factorization

TG = diag(zν1 , . . . , zνk)−1
( νi∑

l=0

g
(νi−l)
ij zl

)
. (2.5)

Later on we will need some more detailed properties of canonical minimal realizations. In
the next theorem we present a slightly more comprehensive picture than necessary in order to
sketch the interplay between realizations and polynomial matrices. Only the very last result
will be needed later on. After a direct proof of the theorem we will place it into the context
of classical systems theory in Remark 2.5 below.

Theorem 2.4 Let (A,B, C, D) ∈ Fδ×δ+k×δ+δ×n+k×n be a canonical system and put G :=
B(z−1I−A)−1C +D ∈ F(z)k×n. Then G is a polynomial matrix if and only if A is nilpotent.
If A is nilpotent one also has the following.
(a) G is basic if and only if rkD = k and rk

(
λI−A C
−B D

)
= δ + k for all λ ∈ F\{0}.

(b) If G is a reduced polynomial matrix then rk
( −A C
−B D

)
= δ + k.

Summarizing, if G is a basic and reduced polynomial matrix then

A nilpotent, rkD = k, rk
(

λI −A C
−B D

)
= δ + k for all λ ∈ F. (2.6)

1The equivalence given in [5, (2.2)] is false in general. It is true, however, if all row degrees of G are positive.
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Proof: The if-part of the first statement follows immediately from G = D+
∑∞

i=1 BAi−1Czi.
The other direction is a well-known result in systems theory, too. Indeed, if TG = Q−1P is
a coprime polynomial factorization then Q−1P = B(zI − A)−1C + D implies det(Q) =
det(zI − A) up to some nonzero constant, see [13, Thms. 8.3-2 and 8.2-3]. Since G being
polynomial yields det(Q) = αzl for some α ∈ F∗, l ∈ N we arrive at the nilpotency of A.
(a) By nilpotency of A the matrix λI −A is regular for λ 6= 0. Thus

rk
(

λI −A C
−B D

)
= rk

(
λI −A C

0 D + B(λI −A)−1C

)
= rk

(
λI −A C

0 G(λ−1)

)
along with G(0) = D completes the proof of (a).
(b) Let G be reduced and consider the controller form (A,B, C, D) of G. Then the required
rank condition is satisfied by Proposition 2.3(ii). By part (iii) of that proposition the con-
troller form is canonical. Now (b) follows for arbitrary canonical realizations of G by using
the facts that each such realization is similar to the controller form and that the rank of(

λI−A C
−B D

)
is invariant under similarity. 2

Remark 2.5 Using the transformation T = TG part (a) of the last theorem is a particular
instance of the well-known system theoretic fact that the transmission zeros (i. e., the zeros
of the transfer matrix) coincide with the invariant zeros of a canonical realization (i. e., the
zeros of the rightmost matrix in (2.6)), see for instance [13, p. 578]. Part (b) reflects the fact
that row reduced matrices have no zeros at infinity, see [13, 6.5.-19, p. 468]. Indeed, by defini-
tion G has a zero at infinity if TG has a zero at zero, meaning that rkP (0) < k for a coprime
factorization Q−1P = TG. But if G is reduced then the factorization in (2.5) shows that TG

has no zeros at zero. The converse of Theorem 2.4(b), and thus the converse of this last state-
ment, is not true. This can be seen from the system (A,B, C, D) =

(
0, ( 2

1 ) , (0, 0, 1), ( 0 1 1
1 0 0 )

)
over F3. It is canonical and satisfies (2.6), but G := B(z−1I−A)−1C +D =

(
0 1 1+2z
1 0 z

)
is not

reduced. As a consequence, (A,B, C, D) is not a canonical minimal realization of the code
C = im G. It can also easily be checked that the matrix TG has no zeros at zero.

Let us now turn to different canonical minimal realizations of a given code (in the sense of
Definition 2.2(2)) and present the main result of this section. As we will see in the proof it is
an application of a classical result from Wolovich in exact model matching for linear systems.
Our specific situation where transfer matrices are polynomial and basic in z−1 makes the
following formulation possible.

Theorem 2.6 Let G, Ḡ ∈ F[z]k×n be basic and reduced and let deg(G) = deg(Ḡ) = δ. Let
(A,B, C, D) and (Ā, B̄, C̄, D̄) be associated canonical realizations, respectively. Then the
following are equivalent.
(i) G = WḠ for some W ∈ GLk(F[z]).
(ii) The systems (A,B, C, D) and (Ā, B̄, C̄, D̄) are equivalent under the full state feedback

group, that is, there exist matrices T ∈ GLδ(F), U ∈ GLk(F), M ∈ Fδ×k such that

Ā = T−1(A−MB)T, B̄ = UBT, C̄ = T−1(C −MD), D̄ = UD. (2.7)

Proof: (ii) ⇒ (i): Define the k×k-matrix V := I +B(z−1I−A)−1M . From systems theory
it is well known [1, p. 346, Eq. (2.43)] that

B(z−1I −A)−1C + D = V U−1
(
UB(z−1I −A + MB)−1(C −MD) + UD

)
, (2.8)
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thus G = V U−1Ḡ. Due to nilpotency of A the matrix V is polynomial. But then W := V U−1

is even unimodular since G and Ḡ are both basic. This yields (i).
(i) ⇒ (ii): Also this implication can directly be deduced from linear systems theory. Indeed,
the identity G = WḠ implies TG = TW TḠ for the associated transfer matrices. This can
be read as exact model matching of the system G from the system Ḡ. In the paper [28]
it has been characterized (at least for systems where all Forney indices are positive) as to
when exact model matching can be realized via the full state feedback group. It is lengthy
but straightforward to check that the sufficient and necessary conditions given in [28, Thm.,
p. 519] are satisfied in our situation. This shows the implication (i) ⇒ (ii).
However, in our very specific situation the proof simplifies considerably and we think it is
worth giving a direct argument. In order to do so first notice that equivalence under the full
state feedback group is indeed an equivalence relation. Since the controller form of a reduced
matrix is canonical and all canonical realizations are similar, we may assume without loss
of generality that both (A,B, C, D) and (Ā, B̄, C̄, D̄) are in controller form. Assumption (i)
implies that G and Ḡ have the same row degrees. Since reordering of the rows of G retains
the specific requirements of the controller form we may further assume that G and Ḡ both
have row degrees ν1 ≥ . . . ≥ νk. Then A = Ā and B = B̄ since they are both fully determined
by the row degrees. Due to reducedness of G and Ḡ the ith row of W has degree at most νi

for i = 1, . . . , k, see [3, Main Thm. (4)]. We will show now that

W =
(
I + B(z−1I −A)−1M

)
U−1 for some M ∈ Fδ×k, U ∈ GLk(F). (2.9)

We certainly have to put U := W (0)−1 and need to find M such that B(z−1I − A)−1M =
WU − I. The latter matrix is of the form WU − I =

(∑νi
j=1 aijz

j
)

i=1,...,k
for suitable

aij ∈ Fk. Using that B(z−1I − A)−1 = diag
( (

z z2 · · · zνi
) )

i=1,...,k
∈ F[z]k×δ one sees

that the matrix M = (M1, . . . ,Mk)T where Mi = (ai1
T, . . . , aiνi

T), satisfies (2.9). Notice that
if νi = 0 the result is true as well since in that case the ith block of M is missing and a zero
row appears in WU − I and B(z−1I −A)−1. Now we have the identity G = V U−1Ḡ where,
again, V = I + B(z−1I −A)−1M . Using (2.8) this reads as

UB(z−1I −A + MB)−1(C −MD) + UD = B(z−1I −A)−1C̄ + D̄ = Ḡ(z). (2.10)

Hence (A − MB,UB,C − MD,UD) is a realization of Ḡ of order deg(Ḡ) and therefore
canonical. As a consequence, (2.10) implies that the realizations (A−MB,UB,C−MD,UD)
and (A,B, C̄, D̄) are similar, and this yields (ii). 2

The result just proven tells us that two canonical minimal realizations of a given code
are equivalent under the full state feedback group. One should bear in mind, however, that
the action of the full state feedback group does in general not preserve the property of being
canonical minimal. This is being illustrated by the following example.

Example 2.7 Let F = F2. Then (A,B, C, D) :=
(
( 0 0

0 0 ) , ( 1 0
0 1 ) , ( 0 1 1

0 0 1 ) , ( 1 0 1
0 1 0 )

)
is canonical.

Moreover, G = B(z−1I −A)−1C + D =
(

1 z 1+z
0 1 z

)
is basic and reduced. Using the feedback

M = ( 0 0
1 0 ) and T = U = I2 the system (Ā, B̄, C̄, D̄) in (2.7) leads to a nilpotent matrix Ā

and a non-reduced encoder matrix Ḡ = B̄(z−1I − Ā)−1C̄ + D̄ =
(

1 z 1+z
z 1+z2 z2

)
. Hence the

realization (A,B, C, D) of the code C is canonical minimal while (Ā, B̄, C̄, D̄) is not.

The last example and Proposition 2.1 suggest that the requirement of reducedness for
encoders seems too strong for this type of considerations. Indeed, the results of this section
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become somewhat more elegant if we replace reducedness by semi-reducedness where we
call a matrix G ∈ F[z]k×n semi-reduced if δM(TG) = deg(G). It is straightforward to show
that the results remain true even for semi-reduced encoders and Proposition 2.1 as well as
Theorem 2.4(b) become if-and-only-if statements. We omit the details.

3 The Weight Adjacency Matrix and Monomial Equivalence

In this section we will return to the particular situation of convolutional codes as dynamical
systems over finite fields. Thus from now on let

F = Fq be a finite field with q elements. (3.1)

Recall the weight of constant and polynomial vectors of length n from the introduction. We
will need the weight enumerator of sets S ⊆ Fn given as

we(S) :=
n∑

i=0

λiW
i ∈ Z[W ], where λi := #{v ∈ S | wt(v) = i}. (3.2)

The weight enumerator we(C) of a block code C ⊆ Fn has been investigated intensively in the
block coding literature. For instance, the famous MacWilliams Identity Theorem [15] tells
us how to completely derive we(C⊥) from we(C), where C⊥ is the dual of C with respect to
the standard inner product on Fn.

In order to introduce an appropriate generalization of the weight enumerator for convolu-
tional codes we need a state space realization. Consider the system in (2.4). Due to (3.1) the
system has qδ different state vectors xt where δ is the order of the realization (A,B, C, D).
We consider now for each pair of states (X, Y ) ∈ F2δ all (finitely many) state transitions from
xt = X to xt+1 = Y via suitable input ut = u and count the weights of all corresponding
outputs v = XC + uD. This leads to the following definition, see also [19, Sec. 2] and [5,
Def. 3.4].

Definition 3.1 Let G ∈ F[z]k×n be a basic and reduced matrix such that deg(G) = δ
and let (A,B, C, D) be a canonical realization of G. We call Fδ the state space of the
realization. The weight adjacency matrix associated with (A,B, C, D) is defined to be the
matrix Λ ∈ Z[W ]q

δ×qδ
that is indexed by the state pairs (X, Y ) ∈ F2δ and has the entries

ΛX,Y := we{XC + uD | u ∈ Fk : Y = XA + uB} ∈ Z[W ] for (X, Y ) ∈ F2δ. (3.3)

Recall that in the case where δ = 0 the matrices A, B, C do not exist while D = G.
As a consequence, Λ = Λ0,0 = we(C) is the ordinary weight enumerator of the block code
C = {uG | u ∈ Fk}.

The weight adjacency matrix is the adjacency matrix of the weighted state-transition
diagram as considered in [11, Sec. 3.10] and [19, Sec. 2]. Its properties have been studied in
detail in the papers [5] and [6]. Among other things it has been discussed in detail in [5, Sec. 3]
that the weight adjacency matrix contains full information about the extended row distances
and the active burst distances of the convolutional code C = im G. These parameters are
closely related to the error-correcting performance of C and are studied intensively in the
more engineering-oriented literature, see, e. g., [12, 8]. In a slightly different form the weight
adjacency matrix appears also in other papers on convolutional coding theory, see, e. g., [11,
Sec. 3.10]. It is mainly used to compute the path weight enumerator (cf. [11, pp. 154])
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counting the number of atomic codewords (fundamental paths in the state diagram) of given
weight and length. As has been shown in [26] (see also [11, Thm. 4.2]) the path weight
enumerator yields an upper bound for the burst error probability of the convolutional code
used on a binary symmetric channel with maximum-likelihood decoding. In the paper [6],
alternative formulas for the entries of the weight adjacency matrix are given. They are used
in order to formulate a conjecture for a MacWilliams Identity for convolutional codes and
their duals which then is proven in special cases. All this makes sense only because the
weight adjacency matrix can indeed nicely be turned into an invariant of the code. This will
be shown in the discussion leading to Definition 3.5 below.

Remark 3.2 In the literature on convolutional codes also the notion of extended path weight
enumerator has been introduced. It is obtained by not only counting codeword weights, but
also keeping track of the weights of the associated message words (see [11, pp. 156] or [17,
pp. 215]). It leads to bounds of certain error probabilities concerning original vs. decoded
message. A lot of effort has been made in order to efficiently compute the extended path
weight enumerator for a given code, see [20, 21, 22]. For our considerations however, it
needs to be pointed out that the extended path weight enumerator as well as the associated
extended weight adjacency matrix do not lead to an invariant of the code but rather depend
on the encoder matrix. Since we are studying code properties, and not encoder properties,
we will not pursue this approach.

Example 3.3 Let

G =
(

z 1 + z2 1 + z z + z2

1 0 1 1

)
∈ F2[z]2×4.

Then G is basic and reduced and the controller form is given by

A =
(

0 1
0 0

)
, B =

(
1 0
0 0

)
, C =

(
1 0 1 1
0 1 0 1

)
, D =

(
0 1 1 0
1 0 1 1

)
.

In order to explicitly display the weight adjacency matrix we need to fix an ordering on the
state space. Let us choose the lexicographic ordering, hence X1 = (0, 0), X2 = (0, 1), X3 =
(1, 0), X4 = (1, 1). Going through all possible combinations of states X and inputs u one
obtains the weight adjacency matrix

Λ =
(
ΛXi,Xj

)
i,j=1,...,4

=


1 + W 3 0 W 2 + W 3 0

W 2 + W 3 0 W + W 2 0
0 1 + W 3 0 W 2 + W 3

0 W 2 + W 3 0 W + W 2

 ,

where the entry at position (i, j) is ΛXi,Xj as defined in (3.3). For instance, the entry ΛX3,X2

is obtained as follows. The state equation X2 = X3A + uB together with X2 = (0, 1) and
X3 = (1, 0) yields the two options u1 = (0, 0) and u2 = (0, 1) for the input. This then leads
to the two outputs v1 = (1, 0, 1, 1) and v2 = (0, 0, 0, 0), and thus to the weight enumerator
ΛX3,X2 = W 3 + 1.

The weight adjacency matrix does not form an invariant of a code but rather depends
on the choice of both the reduced encoder and the canonical realization. This dependence,
however, can nicely be described.
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Theorem 3.4 Let C ⊆ F[z]n be a code of degree δ, and let (A,B, C, D) and (Ā, B̄, C̄, D̄) both
be canonical minimal realizations of C. Furthermore, let Λ and Λ̄ be the associated weight
adjacency matrices, respectively. Then there exists a state space isomorphism T ∈ GLδ(F)
such that

ΛX,Y = Λ̄XT,Y T for all (X, Y ) ∈ F2δ. (3.4)

In particular, Λ̄ = PΛP−1 for some permutation matrix P ∈ GLqδ(Z).

The result appeared first in [5, Remark 3.6, Theorem 4.1]. Using Theorem 2.6 we can give
an alternative, very short proof for this theorem. Indeed, by Theorem 2.6 the two realizations
are equivalent under the full feedback group, thus we may assume (2.7). But then one can
straightforwardly check that for any (X, Y, u, v) ∈ F2δ+k+n

Y = XA + uB, v = XC + uD

is equivalent to

Y T = XTĀ + (uU−1 + XMU−1)B̄, v = XTC̄ + (uU−1 + XMU−1)D̄.

Since for any given X the mapping u 7−→ uU−1 + XMU−1 is bijective on Fk, Equation (3.4)
is immediate from the definition of the weight adjacency matrix.

The result above shows that we obtain an invariant of the code after factoring out the effect
of the state space isomorphisms. This brings us to the following weight counting invariant
for convolutional codes. It has been introduced first in [5, p. 314].

Definition 3.5 Let C ⊆ F[z]n be a code of degree δ and let Λ be the weight adjacency matrix
associated with a canonical minimal realization of C. We call

Λ̄(C) := {Λ′ | ∃T ∈ GLδ(F) : Λ′X,Y = ΛXT,Y T for all (X, Y ) ∈ F2δ}

the adjacency matrix of C.

Let us now study the adjacency matrix with respect to transformations of monomial
equivalence as introduced in Defintion 1.1. The following result is easy to see; it appeared
first in [5, Thm. 4.4].

Proposition 3.6 Let C and C′ be monomially equivalent codes. Then Λ̄(C) = Λ̄(C′).

The main result of this paper states that under a certain condition on the Forney indices the
converse of the statement above is true as well. That is, the adjacency matrix even forms a
complete invariant for monomial equivalence. Indeed, we have the following result.

Theorem 3.7 Let C, C′ ⊆ F[z]n be two codes and assume that all Forney indices of C are
positive. Then C and C′ are monomially equivalent if and only if Λ̄(C) = Λ̄(C′).

Notice that we require that C and C′ are defined over the same field F and have the same
length n. Just like in block coding theory we consider this a reasonable assumption for this
kind of considerations. In the proof we will see that if Λ̄(C) = Λ̄(C′) the codes C and C′ have
the same dimension and Forney indices. Thus the assumption above on the Forney indices
is true for C′ as well.

Remembering that the adjacency matrix can be regarded as a generalization of the weight
enumerator of block codes (see the paragraph right after Definition 3.1) this result comes

11



somewhat surprisingly. Indeed, there exist block codes sharing the same weight enumerator
but are not monomially equivalent; see also Example 3.8(a) at the end of this section. This
shows that the positivity of the Forney indices is certainly a necessary condition for the above
result to be true.

Proof: The only-if part is in Proposition 3.6. Thus let us assume that Λ̄(C) = Λ̄(C′).
The outline of the proof is as follows. We will consider canonical minimal realizations of
the two codes and show that the identity Λ̄(C) = Λ̄(C′) will imply that these realizations
are equivalent under the full state feedback group followed by reordering and rescaling of the
output coordinates. With the aid of Theorem 2.6 we then can conclude that the two associated
encoder matrices satisfy an identity of the form G′ = WGPR for some unimodular matrix W
and permutation and rescaling matrices P, R. This tells us that the codes are monomially
equivalent. We proceed in several steps.
1) We first study the algebraic parameters of the codes and fix suitable realizations. Since the
adjacency matrices have the same size, the two codes have the same degree, say δ. Let G, G′

be any basic and reduced encoder matrices of C and C′ and (A,B, C, D) and (A′, B′, C ′, D′)
be the corresponding controller forms, respectively. Then the two systems have order δ and,
according to Proposition 2.3, they form canonical minimal realizations of the codes C and C′.
Let Λ and Λ′ be the associated weight adjacency matrices. By assumption there exist some
T ∈ GLδ(F) such that

Λ′X,Y = ΛXT,Y T for all (X, Y ) ∈ F2δ. (3.5)

In [5, Thm. 5.1] is has been proven that codes satisfying (3.5) have the same dimension and
the same Forney indices. Thus let k := dim(C) = dim(C′). Using Theorem 3.4 we may
assume that both codes have their Forney indices in the same ordering. Let us denote them
by ν1 ≥ . . . ≥ νk ≥ 1. Notice that δ =

∑k
i=1 νi. Now the controller form implies A′ = A and

B′ = B.
2) Next we will show that

A = T (A−MB)T−1 and B = UBT−1 for some matrices M ∈ Fδ×k, U ∈ GLk(F). (3.6)

By definition of the weight adjacency matrix we have for any (X, Y ) ∈ F2δ

Y −XA ∈ im B ⇐⇒ Λ′X,Y 6= 0 ⇐⇒ ΛXT,Y T 6= 0 ⇐⇒ Y T −XTA ∈ im B.

Putting Ã = TAT−1, B̃ = BT−1, we thus get

Y −XA ∈ im B ⇐⇒ Y −XÃ ∈ im B̃.

Using X = 0 this implies im B̃ = im B and hence BT−1 = ŨB for some Ũ ∈ GLk(F). On the
other hand, for each X ∈ Fδ there exists u ∈ Fk and Y ∈ Fδ such that Y −XA = uB, hence
there exists ũ ∈ Fk such that Y −XÃ = ũB. This implies X(Ã−A) = (u− ũ)B. Using for X
all standard basis vectors we obtain the identity Ã = A + M̃B for some matrix M̃ ∈ Fδ×k.
Hence we arrive at A = T−1(A + M̃B)T and B = ŨBT . This in turn yields (3.6).
3) In this step we will prove that (A,B, C ′, D′) and (A,B, C, D) are related via the full state
feedback group followed by reordering and rescaling of the output coordinates, see (3.8) below.
In order to do so we will compare the entries of the weight adjacency matrices. Consider the
canonical minimal realization (Ā, B̄, C̄, D̄) = (TAT−1, BT−1, TC, D) of the code C. It is easy
to see [5, Rem. 3.6] that the associated weight adjacency matrix Λ̄ satisfies Λ̄X,Y = ΛXT,Y T

for all (X, Y ) ∈ F2δ and hence Equation (3.5) implies

Λ̄ = Λ′.
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Now we can study the entries of these weight adjacency matrices. Since all Forney indices
are positive, the matrix B has full rank k (see the controller form). As a consequence, for
each pair of states (X, Y ) ∈ F2δ the set {XC ′ + uD′ | u ∈ Fk : Y = XA + uB} has at most
one element. Recalling the definition of the weight adjacency matrix in (3.3) one obtains that
the nonzero entries are given by

Λ′X,XA+uB = Λ̄X,XA+uB for all (X, u) ∈ Fδ × Fk, (3.7)

and these entries have the value Λ′X,XA+uB = Wα where α = wt(XC ′ + uD′). On the other
hand notice that, due to (3.6), for any (X, u) ∈ Fδ × Fk we have

XA + uB = X(TAT−1 − TMBT−1) + uUBT−1 = XĀ + ūB̄ where ū = uU −XTM.

Thus (3.3) yields Λ̄X,XA+uB = Λ̄X,XĀ+ūB̄ = W β where β = wt(XC̄ + ūD̄). As a conse-
quence, (3.7) implies

wt
(

(X, u)
(

C ′

D′

))
= wt

(
XC̄ + (uU −XTM)D̄

)
= wt

(
(X, u)

(
C̄ − TMD̄

UD̄

))
for all (X, u) ∈ Fδ × Fk. Now [5, Lemma 5.4], which is basically MacWilliams’ Equivalence
Theorem for block codes, yields the existence of a permutation matrix P ∈ GLn(F) and a
nonsingular diagonal matrix R ∈ GLn(F) such that(

C ′

D′

)
=
(

C̄ − TMD̄
UD̄

)
PR.

With the help of (3.6) we see that the realization (A,B, C ′, D′) of C′ is of the form

(A,B, C ′, D′) = (T (A−MB)T−1, UBT−1, (C̄ − TMD̄)PR,UD̄PR)
= (T (A−MB)T−1, UBT−1, T (C −MD)PR,UDPR).

}
(3.8)

4) Now we can apply Theorem 2.6 and obtain for the associated encoder matrices

G′ = WGPR for some W ∈ GLk(F[z]).

Thus C = im G and C′ = im G′ are monomially equivalent. This completes the proof. 2

Let us briefly mention an immediate consequence of the theorem above. Indeed, for codes
C, C′ ⊆ F[z]n with the assumptions as in the theorem we have the implication

Λ̄(C) = Λ̄(C′) =⇒ Λ̄(C⊥) = Λ̄(C′⊥)

where C⊥ := {w ∈ F[z]n | wvT = 0 for all v ∈ C} is the dual code of C. This follows directly
from Theorem 3.7 and Proposition 3.6 along with the fact that if C and C′ are monomially
equivalent then so are their dual codes. As a consequence, the adjacency matrix of a code
with solely positive Forney indices completely determines the adjacency matrix of its dual.
In the paper [6] it is shown that this is true for a much bigger class of codes and a concrete
formula is given for computing Λ̄(C⊥) from Λ̄(C). It forms a generalization of the famous
MacWilliams’ Identity for the weight enumerators of block codes, see [16, p. 146, Thm. 13].

We close the paper with presenting some examples showing that the theorem above is not
true if some of the Forney indices are zero.
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Example 3.8
(a) Recall that for a block code C = im G, thus G ∈ Fk×n, the adjacency matrix is the

ordinary weight enumerator. In this case it is well known that block codes with the same
weight enumerator are, in general, not monomially equivalent. The following example is
taken from [9, Exa. 1.6.1]. The matrices

G1 =

1 1 0 0 0 0
0 0 1 1 0 0
1 1 1 1 1 1

 , G2 =

1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 1 1 1

 ∈ F3×6
2

generate codes with the same weight enumerator 1 + 3W 2 + 3W 4 + W 6, but are not
monomially equivalent. This can be seen as follows. Since there is no non-trivial rescaling
over the field F2 monomial equivalence of the two codes is the same as G2 = UG1P for
some U ∈ GL3(F2) and a permutation matrix P . As a consequence, G2G2

T = UG1G1
TUT.

But this is a contradiction since G1G1
T = 0 6= G2G2

T.
(b) From the previous data one can also construct an example with positive degree. Using

the rows of the matrices above in a suitable way one obtains

G =
(

1 1 z z 0 0
1 1 1 1 1 1

)
, Ḡ =

(
z + 1 1 z 0 0 0

1 1 1 1 1 1

)
∈ F2[z]2×6.

Both matrices are basic and reduced. The weight adjacency matrices of the associated
controller forms are both given by

Λ =
(

1 + W 6 W 2 + W 4

W 2 + W 4 W 2 + W 4

)
.

But the codes C = im G and C̄ = im Ḡ are not monomially equivalent. This can be seen
by computing UG for all U ∈ GL2(F2[z]) such that UG is reduced with indices 1 and 0
again. The only options are

U ∈
{

I2,

(
1 1
0 1

)
,

(
1 z
0 1

)
,

(
1 1 + z
0 1

)}
and it is seen by inspection that in none of these cases UG has, up to ordering, the same
columns as Ḡ (again,over F2 we can disregard rescaling matrices).

Conclusion

In this note we have shown that codes with all Forney indices being positive are monomially
equivalent if and only if they share the same adjacency matrix. Hence this matrix forms
a complete invariant under monomial equivalence for this class of codes. The result is not
true for codes with at least one Forney index being zero (unless they are one-dimensional
block codes). The adjacency matrix contains in a detailed way information about the error-
correcting quality of the code in question. It has to remain open for future research if there is a
way to generalize this result to arbitrary convolutional codes. In this context the investigation
of isometries with further coding-theoretically meaningful properties should play a role. Once
a concept has been established the question whether the adjacency matrix forms an invariant
under such isometries needs to be addressed.
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14



References

[1] P. J. Antsaklis and A. N. Michel. Linear Systems. McGraw-Hill, New York, 1997.
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