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Abstract

After a discussion of the Griesmer and Heller bound for the distance of a convolutional
code we present several codes with various parameters, over various fields, and meeting
the given distance bounds. Moreover, the Griesmer bound is used for deriving a lower
bound for the field size of an MDS convolutional code and examples are presented showing
that, in most cases, the lower bound is tight. Most of the examples in this paper are cyclic
convolutional codes in a generalized sense as it has been introduced in the seventies. A
brief introduction to this promising type of cyclicity is given at the end of the paper in
order to make the examples more transparent.
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1 Introduction

The fundamental task of coding theory is the construction of good codes, that is, codes having
a large distance and a fast decoding algorithm. This task applies equally well to block codes
and convolutional codes. Yet, the state of the art is totally different for these two classes of
codes. The mathematical theory of block codes is highly developed and has produced many
sophisticated classes of codes, some of which, like BCH-codes, also come with an efficient
decoding algorithm. On the other hand, the mathematical theory of convolutional codes is
still in the beginnings. Engineers make use of these codes since decades, but all convolutional
codes used in practice have been found by systematic computer search and their distances
have been found by computer as well, see for instance [12] and [9, Sec. 8] for codes having
the largest distance among all codes with the same parameters. Moreover, in all practical
situations decoding of convolutional codes is done by search algorithms, for instance the
Viterbi algorithm or one of the sequential decoding algorithms, e. g. the stack algorithm. It
depends on the algorithm how complex a code may be without exceeding the range of the
decoding algorithms. However, the important fact about the theory of convolutional codes is
that so far no specific codes are known that allow an algebraic decoding (in the present paper
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a decoding algorithm will be called algebraic if it is capable to exploit the specific structure
of the given code in order to avoid a full search).

Since the seventies quite some effort has been made in order to find algebraic constructions of
convolutional codes that guarantee a large (free) distance [10, 15, 11, 23, 4]. The drawbacks
of all these constructions are that, firstly, the field size has to be adapted and in general
becomes quite large and, secondly, so far no algebraic decoding for these codes is known. A
main feature of most of these constructions is that they make use of cyclic block codes in
order to derive the desired convolutional code.

Parallel to these considerations there was an independent investigation of convolutional codes
that have a cyclic structure themselves, which also began in the seventies [18, 19, 6, 5]. It was
the goal of these papers to see whether this additional structure has, just like for block codes,
some benefit for the error-correcting capability of the code. The first and very important
observation of the seventies was the fact that a convolutional code which is cyclic in the
usual sense is a block code. This negative insight has led to a more complex notion of
cyclicity for convolutional codes. The algebraic analysis of these codes has been completed
only recently in [5] and yields a nice, yet nontrivial, generalization of the algebraic situation
for cyclic block codes. Furthermore, by now plenty of optimal cyclic convolutional codes
have been found in the sense that their (free) distance reaches the Griesmer bound. To the
best of our knowledge it was, for most cases of the parameters, not known before whether
such optimal codes existed. Many of these codes are over small fields (like the binary field)
and are therefore well-suited for the existing decoding algorithms. Along with the algebraic
theory of [5] all this indicates that this notion of cyclicity is not only the appropriate one for
convolutional codes but also a very promising one. Yet, the theory of these codes is still in
the beginnings. So far, no theoretical results concerning the distance of such a code or its
decoding properties are known. But we are convinced that this class of codes deserves further
investigation and that the theory developed so far will be a good basis for the next steps.

It is the aim of this paper to present many of these examples in order to introduce the
class of cyclic convolutional codes to the convolutional coding community. The examples
are presented via a generator matrix so that no knowledge about cyclicity for convolutional
codes is required from the reader. The (free) distances of all these codes have been obtained
by a computer program. A detailed discussion of various distance bounds for convolutional
codes over arbitrary fields shows that all the given codes are optimal with respect to their
distance. It is beyond the scope of this paper to acquaint the reader with the theory of cyclic
convolutional codes. However, in Section 5 we will give a very brief introduction into this
subject so that the reader may see how the examples have been constructed. The details of
the theory can be found in [5].

The outline of the paper is as follows. After reviewing the main notions of convolutional
coding theory in the next section we will discuss in Section 3 various bounds for the free
distance of a convolutional code, the Griesmer bound, the Heller bound and the generalized
Singleton bound. The first two bounds are well-known for binary convolutional codes and
can straightforwardly be generalized to codes over arbitrary fields. It is also shown that
for all sets of parameters the Griesmer bound is at least as good as the Heller bound. The
generalized Singleton bound is an upper bound for the free distance of a code of given length,
dimension, and complexity, but over an arbitrary field. Just like for block codes a code
reaching this bound is called an MDS code [22]. The Griesmer bound is used for showing
how large the field size has to be in order to allow for an MDS code. In Section 4 many
examples of codes are presented reaching the respective bound. Most of these examples are
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cyclic convolutional codes, but we also include some other codes with the purpose to exhibit
certain features of convolutional codes. For instance, we give examples of MDS codes showing
that the lower bounds for the field size as derived in Section 3 are tight. Furthermore, an
example is given showing that a code reaching the Griesmer bound may have extreme Forney
indices, a phenomenon that does not occur for MDS codes. The paper concludes with a brief
account of cyclicity for convolutional codes.

2 Preliminaries

We will make use of the following notation. The symbol F stands for any finite field while Fq

always denotes a field with q elements. The ring of polynomials and the field of formal
Laurent series over F are given by

F[z] =
{ N∑

j=0

fjz
j
∣∣∣ N ∈ N0, fj ∈ F

}
and F((z)) =

{ ∞∑
j=l

fjz
j
∣∣∣ l ∈ Z, fj ∈ F

}
.

The following definition of a convolutional code is standard.

Definition 2.1 Let F = Fq be a field with q elements. An (n, k, δ)q-convolutional code is a
k-dimensional subspace C of the vector space F((z))n of the form

C = im G :=
{
uG

∣∣ u ∈ F((z))k}
where G ∈ F[z]k×n satisfies
(a) G is right invertible, i. e. there exists some matrix G̃ ∈ F[z]n×k such that GG̃ = Ik.
(b) δ = max{deg γ | γ is a k-minor of G}.
We call G a generator matrix and δ the complexity of the code C.

The complexity is also known as the overall constraint length [9, p. 55] or the degree [16,
Def. 3.5] of the code. Notice that a generator matrix is always polynomial and has a poly-
nomial right inverse. This implies that in the situation of Definition 2.1 the polynomial
codewords belong to polynomial messages, i. e.

C ∩ F[z]n =
{
uG

∣∣ u ∈ F[z]k
}
. (2.1)

In other words, the generator matrix is delay-free and non-catastrophic. As a consequence,
a convolutional code is always uniquely determined by its polynomial part. Precisely, if
C = im G and C′ = im G′ where G, G′ ∈ F[z]k×n are right invertible, then

C = C′ ⇐⇒ C ∩ F[z]n = C′ ∩ F[z]n. (2.2)

This follows from (2.1) and the fact that {uG | u ∈ F[z]k} = {uG′ | u ∈ F[z]k} is equivalent
to G′ = V G for some matrix V ∈ F[z]k×k that is invertible over F[z]. This also shows that
the complexity of a code does not depend on the choice of the generator matrix. From all
this it should have become clear that with respect to code construction there is no difference
whether one works in the context of infinite message and codeword sequences (Laurent series)
or finite ones (polynomials) as long as one considers right invertible generator matrices. Only
for decoding it becomes important whether or not one may assume the sent codeword to be
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finite. The issue whether convolutional coding theory should be based on finite or infinite
message sequences, has first been raised and discussed in detail in [21, 20].

It is well-known [2, Thm. 5] or [3, p. 495] that each convolutional code has a minimal generator
matrix in the sense of the next definition. In the same paper [3, Sec. 4] it has been shown
how to derive such a matrix from a given generator matrix in a constructive way.

Definition 2.2 (1) For v =
∑N

j=0 vjz
j ∈ F[z]n where vj ∈ Fn and vN 6= 0 let deg v := N be

the degree of v. Moreover, put deg 0 = −∞.
(2) Let G ∈ F[z]k×n be a right invertible matrix with complexity δ = max{deg γ | γ is a

k-minor of G} and let ν1, . . . , νk be the degrees of the rows of G in the sense of (1). We
say that G is minimal if δ =

∑k
i=1 νi. In this case, the row degrees of G are uniquely

determined by the code C := im G ⊆ F((z))n. They are called the Forney indices of C and
the number max{ν1, . . . , νk} is said to be the memory of the code. An (n, k, δ)q-code
with memory m is also called an (n, k, δ;m)q-code.

From the above it follows that an (n, k, δ)q-convolutional code has a constant generator matrix
if and only if δ = 0. In that case the code can be regarded as an (n, k)q-block code.

The definition of the distance of a convolutional code is straightforward. For a constant
vector w = (w1, . . . , wn) ∈ Fn we define its (Hamming) weight as wt(w) = #{i | wi 6= 0}.
For a polynomial vector v =

∑N
j=0 vjz

j ∈ F[z]n, where vj ∈ Fn, the weight is defined as
wt(v) =

∑N
j=0 wt(vj). Then the (free) distance of a code C ⊆ F((z))n with generator matrix

G ∈ F[z]k×n is given as

dist(C) := min
{
wt(v)

∣∣ v ∈ C ∩ F[z]n, v 6= 0
}
.

By virtue of (2.1) this can be rephrased as dist(C) = min{wt(uG) | u ∈ F[z]k, u 6= 0}.

When presenting some optimal codes in Section 4 we will also investigate the column distances
of the codes. For each l ∈ N0 the lth column distance of C is defined as

dc
l = min

{
wt

(
(uG)[0,l]

) ∣∣∣ u ∈ F[z]k, u0 6= 0
}

(2.3)

where for a polynomial vector v =
∑N

j=0 vjz
j we define v[0,l] =

∑min{N,l}
j=0 vjz

j . It can easily
be shown [9, Thm. 3.4] that for each code C there exists some M ∈ N0 such that

dc
0 ≤ dc

1 ≤ dc
2 . . . ≤ dc

M = dc
M+1 = . . . = dist(C). (2.4)

3 Distance Bounds

In this section we want to present some upper bounds for the distance of a convolutional
code. These bounds are quite standard for binary convolutional codes and can be found
in Chapter 3.5 of the book [9]. The proof for arbitrary fields goes along the same lines of
arguments, but for sake of completeness we wish to repeat the arguments in this paper. We
will also compare the numerical values of the bounds with each other.

Let us begin with recalling various distance bounds for block codes. The Plotkin bound as
given below can be found in [1, 1.4.3], but can also easily be derived from the more familiar
formula

if d > θn where θ =
q − 1

q
, then qk ≤ d

d− θn
, (3.1)
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see for instance [13, (5.2.4)]. As for the Singleton and the Griesmer bound we also refer
to [13, Ch. 5.2].

Theorem 3.1 Let C ⊆ Fn be an (n, k)q-block code and let d = dist(C). Then

d ≤ n− k + 1 (Singleton bound),

d ≤
⌊nqk−1(q − 1)

qk − 1

⌋
(Plotkin bound),

k−1∑
l=0

⌈ d

ql

⌉
≤ n (Griesmer bound).

An (n, k)q-code C with dist(C) = n− k + 1 is called an MDS code.

Notice that the Singleton bound does not take the field size into account. As a consequence
the question arises as to how large the field size q has to be in order to allow the existence of
MDS codes and how to construct such codes. Answers in this direction can be found in [14,
Ch. 11].

It is certainly well-known that the Griesmer bound is at least as good as the Plotkin bound.
The importance of the Plotkin bound, however, is that it also applies to nonlinear block
codes, in which case it is usually given as in (3.1) and with M := |C| instead of qk. Since we
did not find a comparison of the two bounds for linear block codes in the literature we wish
to present a short proof of this statement. We also include the relation between the Griesmer
and the Singleton bound.

Proposition 3.2 Given the parameters n, k, d, and q ∈ N where k < n and q is a prime

power. Assume
∑k−1

l=0

⌈
d
ql

⌉
≤ n. Then

(a) d ≤
⌊nqk−1(q − 1)

qk − 1

⌋
,

(b) d ≤ n− k + 1.

There is no relation between the Plotkin and the Singleton bound in this generality. Roughly
speaking, for relatively large values of q the Singleton bound is better than the Plotkin bound
while for small values the Plotkin bound is better.

Proof: (a) Assume to the contrary that d >
⌊nqk−1(q−1)

qk−1

⌋
. Since d is an integer this implies

that d > nqk−1(q−1)
qk−1

. Thus

k−1∑
l=0

⌈ d

ql

⌉
≥

k−1∑
l=0

d

ql
>

k−1∑
l=0

n(q − 1)
qk − 1

qk−1−l =
n(q − 1)
qk − 1

k−1∑
l=0

ql = n.

(b) follows from
∑k−1

l=0

⌈
d
ql

⌉
≥ d + k − 1. 2

One should also recall that the Griesmer bound is not tight. An example is given by the
parameters n = 13, k = 6, q = 2 in which case the Griesmer bound shows that the distance
is upper bounded by 5. But it is known that no (13, 6)2-code with distance 5 exists, see [13,
p. 69].

We will now present the generalization of these bounds to convolutional codes. Let us begin
with the Singleton bound. The following result has been proven in [22, Thm. 2.2].
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Theorem 3.3 Let C ⊆ F((z))n be an (n, k, δ)-code. Then

(a) The distance of C satisfies

dist(C) ≤ (n− k)
(⌊ δ

k

⌋
+ 1

)
+ δ + 1 =: S(n, k, δ).

The number S(n, k, δ) is called the generalized Singleton bound for the parameters
(n, k, δ) and we call the code C an MDS code if dist(C) = S(n, k, δ).

(b) If C is an MDS code and δ = ak + r where a ∈ N0 and 0 ≤ r ≤ k − 1, then the Forney
indices of C are given by

a, . . . , a︸ ︷︷ ︸
k−r times

, a + 1, . . . , a + 1︸ ︷︷ ︸
r times

.

Hence the code is compact in the sense of [16, Cor. 4.3].

Just like for block codes the acronym MDS stands for maximum distance separable. In [22,
Thm. 2.10] it has been shown that for all given parameters n, k, δ and all primes p there exists
an MDS code over a suitably large field of characteristic p. The proof is non-constructive
and, as a consequence, does not give a hint about the field size required. In [23, Thm. 3.3] a
construction of (n, k, δ)-MDS codes over fields Fpr is given under the condition that n|(pr−1)
and pr ≥ nδ2

k(n−k) . Notice that this requires n and the characteristic p being coprime. This
result gives first information about the field size required in order to guarantee the existence
of an MDS code. However, many examples of MDS codes over smaller fields are known. We
will present some of them in the next section. Although they all have a certain structure in
common (they are cyclic in the sense of Section 5) we do not know any general construction
for cyclic MDS codes yet.

Now we proceed with a generalization of the Plotkin and Griesmer bound to convolutional
codes.

Theorem 3.4 Let C be an (n, k, δ;m)q-convolutional code having distance dist(C) = d.
Moreover, let

N̂ =

{
N := {1, 2, . . .}, if km = δ

N0 := {0, 1, 2, . . .}, if km > δ

Then

d ≤ min
i∈N̂

⌊n(m + i)qk(m+i)−δ−1(q − 1)
qk(m+i)−δ − 1

⌋
=: Hq(n, k, δ;m) (Heller bound)

d ≤ max
{

d′ ∈ {1, . . . , S(n, k, δ)}
∣∣∣ k(m+i)−δ−1∑

l=0

⌈d′

ql

⌉
≤ n(m + i) for all i ∈ N̂

}
=: Gq(n, k, δ;m) (Griesmer bound)

Moreover, Gq(n, k, δ;m) ≤ Hq(n, k, δ;m).

In the binary case (q = 2) both bounds can be found in [9, 3.17 and 3.22]. In that version the
first bound has been proven first by Heller in [7]. The Griesmer bound as given above differs
slightly from the one given at [9, 3.22]. We have upper bounded the possible values for d′

by the generalized Singleton bound, which is certainly reasonable to do. As a consequence,
the Griesmer bound is always less than or equal to the generalized Singleton bound. This
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would not have been the case had we taken the maximum over all d′ ∈ N. This can be seen
by taking the parameters (n, k, δ;m)q = (5, 2, 3; 3)8. In this case the generalized Singleton
bound is S(n, k, δ) = 10 but the inequalities of the Griesmer bound are all satisfied for the
value d′ = 12.

The proof of the inequalities above is based on the same idea as in the binary case as we will
show now.

Proof: The last statement follows from Proposition 3.2(a). As for the bounds themselves
we will see that they are based on certain block codes which appear as subsets of the given
convolutional code C. This will make it possible to apply the block code bounds of Theo-
rem 3.1. The subcodes to be considered are simply the subsets of all codewords corresponding
to polynomial messages with an upper bounded degree.
Let C = im G, where G ∈ F[z]k×n is right-invertible and minimal with Forney indices
ν1, . . . , νk. Hence δ =

∑k
i=1 νi and m = max{ν1, . . . , νk}. Notice that km ≥ δ and km =

δ ⇐⇒ ν1 = . . . = νk = m. For each i ∈ N0 define

Ui = {(u1, . . . , uk) ∈ F[z]k | deg ul ≤ m + i− 1− νl for l = 1, . . . , k}.

This implies ul = 0 if νl = m and i = 0. In particular, Ui = {0} ⇐⇒ km = δ and i = 0
and this shows that i = 0 has to be excluded if km = δ. Obviously, the set Ui is an F-vector
space and dimF Ui =

∑k
l=1(m + i− νl) = k(m + i)− δ. Consider now Ci := {uG | u ∈ Ui} for

i ∈ N0. Then Ci ⊆ C and Ci is an F-vector space and, by injectivity of G,

dimF Ci = dimF Ui = k(m + i)− δ.

Furthermore, minimality of the generator matrix G tells us that

deg(uG) = max
l=1,...,k

(deg ul + νl) ≤ m + i− 1 for all u ∈ Ui,

see [3, p. 495]. Hence Ci can be regarded as a block code of length n(m + i) and dimension
k(m + i)− δ for all i ∈ N̂. Since dist(C) ≤ dist(Ci) for all i ∈ N̂ we obtain the desired results
by applying the Plotkin and Griesmer bounds of Theorem 3.1 to the codes Ci. 2

The proof shows that the existence of an (n, k, δ;m)q-code meeting the Griesmer bound
implies the existence of (n(m+i), k(m+i)−δ)q-block codes having at least the same distance
for all i ∈ N̂. The converse, however, is not true, since the block codes have to have some
additional structure. We will come back to this at the end of this section.

One should note that these bounds do only take the largest Forney index, the memory, into
account. More precisely, the proof shows that codewords having degree smaller than m − 1
are never taken into consideration. As a consequence, codes with a rather bad distribution
of the Forney indices will never attain the bound. For instance, for a code with parameters
(n, k, δ;m)q = (5, 3, 4; 2)2 the Griesmer bound shows that the distance is upper bounded by 6.
This can certainly never be attained if the Forney indices of that code are given by 0, 2, 2
since in that case a constant codeword exists. Hence the Forney indices have to be 1, 1, 2.
In this case a code with distance 6 does indeed exist, see the first code given in Table I of
Section 4. But also note that, on the other hand, a code reaching the Griesmer bound need
not be compact (see Theorem 3.3(b)); an example is given by the (5, 2, 6; 4)2-code given in
Table I of the next section.

The Griesmer bound as given above has the disadvantage that infinitely many inequalities
have to be considered. A simple way to reduce this to finitely many inequalities is obtained
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by making use of the generalized Singleton bound S(n, k, δ). Instead of this bound one could
equally well use any of the numbers occurring on the right hand side of the Heller bound.

Proposition 3.5 Given the parameters n, k, m, δ such that k < n and km ≥ δ and let q be
any prime power. Define the set N̂ as in Theorem 3.4. Furthermore, let i0 ∈ N be such that
qk(m+i0)−δ ≥ S(n, k, δ) and put N̂≤i0 := N̂ ∩ {0, 1, . . . , i0}. Then

Gq(n, k, δ;m)=max
{

d′ ∈ {1, . . . , S(n, k, δ)}
∣∣∣k(m+i)−δ−1∑

l=0

⌈d′

ql

⌉
≤ n(m + i) for all i ∈ N̂≤i0

}
.

(3.2)
Hence the distance of an (n, k, δ;m)q-code is upper bounded by the number given in (3.2).

We will see in the next section that the Griesmer bound is tight for many sets of parameters.

Proof: Notice that for a ≥ S(n, k, δ) we have
⌈

d′

a

⌉
= 1 since d′ ≤ S(n, k, δ). As for (3.2)

it suffices to show that whenever d′ satisfies the inequality
∑k(m+i)−δ−1

l=0

⌈
d′

ql

⌉
≤ n(m + i) for

some i ≥ i0, then it also satisfies the inequality for i + 1. But this follows easily from

k(m+i+1)−δ−1∑
l=0

⌈d′

ql

⌉
=

k(m+i)−δ−1∑
l=0

⌈d′

ql

⌉
+

k(m+i+1)δ−1∑
l=k(m+i)−δ

⌈d′

ql

⌉
≤ n(m + i) + k ≤ n(m + i + 1). 2

The finite sets for d′ and i in (3.2) are not optimized, but they are good enough for our
purposes since they allow for a computation of the Griesmer bound in finitely many steps.
Unfortunately, (3.2) does not reveal the block code case where only the index i = 1 has to be
considered according to Theorem 3.1. The consistency of the Griesmer bound for m = δ = 0
with that case is guaranteed by the following result.

Proposition 3.6 Given the parameters n, k, and q. Then

max
{

d′ ∈ N
∣∣∣ ki−1∑

l=0

⌈d′

ql

⌉
≤ ni for all i ∈ N

}
= max

{
d′ ∈ N

∣∣∣ k−1∑
l=0

⌈d′

ql

⌉
≤ n

}
.

Proof: Let d′ be any number satisfying
∑k−1

l=0

⌈
d′

ql

⌉
≤ n. We have to show that d′ satisfies

the inequalities given on the left hand side for all i ∈ N. In order to do so, notice that
according to Proposition 3.2(a)

d′ ≤
⌊nqk−1(q − 1)

qk − 1

⌋
≤ nqk−1

1 + q + . . . + qk−1
≤ n

k
qk−1.

But this implies d′

ql < n
k for all l ≥ k, thus

⌈
d′

ql

⌉
≤ n

k and

ki−1∑
l=0

⌈d′

ql

⌉
=

k−1∑
l=0

⌈d′

ql

⌉
+

ki−1∑
l=k

⌈d′

ql

⌉
≤ n + k(i− 1)

n

k
= ni.

This proves the assertion. 2

Finally we want to investigate as to how big the field size q has to be in order to allow for an
MDS code with parameters (n, k, δ)q. A first estimate can be achieved by using the Griesmer
bound in combination with the generalized Singleton bound.
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Theorem 3.7 Let C ⊆ F((z))n be an (n, k, δ;m)q-MDS code, thus d := dist(C) = S(n, k, δ) =
(n− k)

(⌊
δ
k

⌋
+ 1

)
+ δ + 1. Then the field size q satisfies

q ≥

{
d

n−k+1 , if [k = 1] or [k > 1 and km = δ + 1]

d, if [k > 1 and km 6= δ + 1].

The estimate above also covers the block code case as given in [14, p. 321].

Proof: We will consider the various cases separately. In each case we will apply the inequal-
ity

d

q
≤ n(m + i)− d−

k(m+i)−δ−1∑
l=2

⌈ d

ql

⌉
, (3.3)

which is a simple consequence of the Griesmer bound, to the case d = S(n, k, δ). Moreover
we will make use of the fact that

⌈
d
ql

⌉
≥ 1 for all l ∈ N.

k = 1: In this case m = δ and d = n(m + 1). Since k(m + i)− δ− 1 = i− 1 Inequality (3.3)
gives us

d

q
≤ n(m + i)− n(m + 1)− (i− 2) = n(i− 1)− i + 2

for all i ≥ 2. This shows q ≥ d
n as desired. Using i = 1 in the Griesmer bound simply leads

to d ≤ n(m + 1). This is true by assumption and gives no further condition on q.
k > 1 and km = δ: Now m = δ

k and thus d = (n−k)(m+1)+mk+1. Using k(m+i)−δ−1 =
ki− 1 we obtain from Inequality (3.3)

d

q
≤ n(m + i)− (n− k)(m + 1)−mk − 1− (ki− 2) = (n− k)(i− 1) + 1

for all i ≥ 1. Using i = 1 leads to q ≥ d.
k > 1 and km > δ: In this case m =

⌊
δ
k

⌋
+1, see Theorem 3.3(b), and d = (n−k)m+ δ +1.

Therefore Inequality (3.3) leads to

d

q
≤ n(m + i)− (n− k)m− δ − 1−

(
k(m + i)− δ − 2

)
= (n− k)i + 1

for all i ≥ 1. This shows q ≥ d
n−k+1 . In order to finish the proof we have to consider also

i = 0. In the case km = δ + 1 the Griesmer bound applied to i = 0 simply leads to d ≤ nm,
which is true anyway, and no additional condition on q arises. If km− δ > 1 a better bound
can be achieved. Since

⌊
δ
k

⌋
= m − 1, we obtain after division with remainder of δ by k an

identity of the form δ = (m − 1)k + r where 0 ≤ r < k − 1. Thus d = nm − k + r + 1 and
Inequality (3.3) for i = 0 leads to

d

q
≤ nm− d−

k−r−1∑
l=2

⌈ d

ql

⌉
≤ k − r − 1− (k − r − 2) = 1,

hence q ≥ d.
This covers all cases, since we always have km ≥ δ. 2

The proof shows that in general the lower bounds on q are not tight since we have estimated⌈
d
ql

⌉
by 1 for l ≥ 2 in all cases. For instance, if (n − k + 1)2 > d, no (n, k, δ;m)q-MDS code

exists for q = d
n−k+1 and k = 1 or km = δ + 1. But even if

⌈
d
ql

⌉
= 1 for all l ≥ 2 there might
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not exist an (n, k, δ)q-MDS code where q attains the lower bound. The obstacle is that for
some i ∈ N̂ there might not exist an (n(m+ i), k(m+ i)−δ)q-block code with the appropriate
distance as required by the proof of Theorem 3.4. Since these block codes have to produce a
convolutional code in a very specific way, they even have to have some additional structure.
We wish to illustrate this by the following example.

Example 3.8 Let (n, k, δ) = (3, 2, 3). The generalized Singleton bound is d := S(3, 2, 3) = 6
and the memory of a (3, 2, 3)-MDS code is m = 2, see Theorem 3.3(b). From Theorem 3.7 we
obtain q ≥ 3 for the field size. Taking q = 3 we have

⌈
d
q2

⌉
= 1 so that indeed the lower bound

for the field size cannot be improved. The existence of a (3, 2, 3; 2)3-MDS code requires the
existence of (3(2 + i), 1 + 2i)3-block codes with distance at least 6 for all i ∈ N0. Such codes
do indeed exist1. However, the block codes have to have some additional structure in order to
be part of a convolutional code. To see this, let G ∈ F3[z]2×3 be a minimal generator matrix
of the desired convolutional code C. Write

G =
[
g1

g2

]
+ z

[
g3

g4

]
+ z2

[
g5

0

]
where gi ∈ F3

3.

Recall from the proof of Theorem 3.4 that our arguments are based in particular on the block
code C1 := {(u1, u2 + u3z)G | u1, u2, u3 ∈ F3}. Comparing like powers of z one observes that
this code is isomorphic to

Ĉ1 = im

g1 g3 g5

g2 g4 0
0 g2 g4

 ⊆ F9
3.

Using elementary row operations on the polynomial matrix G we may assume that the entry
of G at the position (1, 1) is a constant. Furthermore, after rescaling the columns of G we
may assume g4 = (1, 1, 1). Finally, due to non-catastrophicity, the entries of g2 are not all the
same and because of dist(Ĉ1) = 6, all nonzero. This gives us (up to block code equivalence)
the two options

im

a1 a2 a3 0 a4 a5 0 a6 a7

1 1 2 1 1 1 0 0 0
0 0 0 1 1 2 1 1 1

 or im

a1 a2 a3 0 a4 a5 0 a6 a7

1 2 2 1 1 1 0 0 0
0 0 0 1 2 2 1 1 1


for Ĉ1. Going through some tedious calculations one can show that no such code in F9

3 with
distance 6 exists. Hence no (3, 2, 3)3-MDS convolutional code exists.

In the next section we will give examples of MDS codes over fields Fq where q attains the
lower bound in all cases except for the case km = δ + 1.

4 Examples of Some Optimal Convolutional Codes

In this section we present some convolutional codes with distance reaching the Griesmer
bound. To the best of our knowledge it was for most of the parameters, if not all, not known
before whether such codes existed.

1For small i these codes can be found in tables listing ternary codes. For the general case we wish to thank
H.-G. Quebbemann who pointed out to us a construction of such codes for sufficiently large i using direct
products of finitely many “short” MDS-codes over F33 and mapping them into ternary codes.
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In the first column of the tables below the parameters of the given code are listed. In the
second column we give the Griesmer bound g := Gq(n, k, δ;m) for these parameters. The
third column gives a code reaching this bound. In all examples the distance of the code
has been computed via a program. In each case the code is given by a minimal generator
matrix. Thus, in particular all matrices given below are right invertible. In the forth column
we present the index of the first column distance that reaches the free distance, cf. (2.4).
In the last column we indicate whether the code is a cyclic convolutional code in the sense
of Section 5. At the moment this additional structure is not important. We only want to
mention that cyclic convolutional codes do not exist for all sets of parameters, in particular
the length and the characteristic of the field have to be coprime (just like for block codes).
Moreover, the shortest binary cyclic convolutional codes with complexity δ > 0 have length
n = 7 or n = 15.

The fields being used in the tables are F2 = {0, 1}, F4 = {0, 1, α, α2} where α2 + α + 1 = 0,
F8 = {0, 1, β, . . . , β6} where β3 +β +1 = 0, and F16 = {0, 1, γ, . . . , γ14} where γ4 +γ +1 = 0.

The generator matrix Ĝ3 of the (15, 4, 12; 3)2-code in Table I is given by

Ĝ3
T =



1 + z2 1 + z + z3 z + z2 1 + z + z3

1 + z + z2 1 + z + z2 + z3 1 + z + z2 + z3 z
1 + z + z3 1 + z + z2 1 + z + z2 1 + z2 + z3

z 1 + z + z3 1 1 + z + z2

z z2 1 + z 1 + z3

z2 z + z3 z3 1 + z + z2 + z3

1 + z + z3 z2 + z3 z + z2 + z3 z
z3 1 + z + z2 z + z3 z2

z + z2 + z3 z + z2 1 + z3 z2 + z3

1 + z + z2 + z3 z2 + z3 z2 1 + z + z2

1 1 z + z2 + z3 z2

z2 + z3 1 + z 1 0
1 + z 0 1 + z2 + z3 1 + z3

z2 + z3 1 + z2 + z3 z3 1 + z + z3

1 + z2 + z3 z3 1 + z + z2 z + z2 + z3



.

Some additional explanations and remarks will follow the tables.
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Table III
(n, k, δ; m)q g code meeting the Griesmer bound dc

i cy

(6, 3, 3; 1)2 6 columns 1, 2, 3, 5, 6, 7 of G1 (even) 3

(6, 3, 6; 2)2 10 columns 1, 2, 4, 5, 6, 7 of G2 (even) 3

(14, 4, 4; 1)2 14 columns 1 – 14 of Ĝ1 (not even) 3

(13, 4, 4; 1)2 13 columns 1, 2, 4 – 14 of Ĝ1 (not even) 3

(12, 4, 4; 1)2 12 columns 1, 2, 4 – 12, 14 of Ĝ1 (even) 3

(10, 4, 4; 1)2 10 columns 1, 2, 4, 6 – 11, 14 of Ĝ1 (even) 4

(8, 4, 4; 1)2 8 columns 1, 2, 4, 5, 8, 11, 13, 14 of Ĝ1 (not even) 4

(14, 4, 8; 2)2 22 columns 2 – 15 of Ĝ2 (even?) 6

(13, 4, 8; 2)2 20 columns 1 – 4, 7 – 15 of Ĝ2 (even?) 6

(12, 4, 8; 2)2 18 columns 1, 2, 4, 7 – 15 of Ĝ2 (not even) 6

(10, 4, 8; 2)2 16 columns 1, 2, 4, 5, 7, 8, 10, 11, 13, 14 of Ĝ2 (even?) 7

(8, 4, 8; 2)2 12 columns 1, 2, 6, 9, 12 – 15 of Ĝ2 (even?) 9

It remains to explain some additional notation of the tables. We also make some further
comments illustrating the contents of the tables.

Remark 4.1 (a) A ∗ attached to the bounds in the second column indicate that these
numbers are identical to the generalized Singleton bound. Hence the corresponding
codes are even MDS codes.

(b) An additional supscript • attached to the bound g indicates that the code is an MDS
code where the field size reaches the lower bound of Theorem 3.7. This gives us examples
for the three cases k = 1, km > δ + 1, and km = δ. We did not find an example of an
(n, k, δ)q-MDS code where km = δ + 1 and q = d

n−k+1 .
(c) In [4, Prop. 2.3] it has been shown that the jth column distance of an (n, k, δ)q-code

satisfies dc
j ≤ (n − k)(j + 1) + 1. From this it follows that the earliest column distance

of an MDS code that can reach the free distance has index M :=
⌊

δ
k

⌋
+

⌈
δ

n−k

⌉
, see [4,

Prop. 2.6]. In the same paper an MDS code is called strongly MDS if the Mth column
distance is equal to the free distance. We attached a ∗∗ to the index of the column
distance in the second last column of the tables in order to indicate the strongly MDS
codes. As far as we know no upper bound for the column distances is known that also
takes the field sizes into account. However, using the estimate dc

j ≤ (n − k)(j + 1) + 1
one observes that the (5, 2, 2; 1)4- and the (9, 3, 1; 1)8-code are also optimal in the sense
that no code with the same parameters exists where an earlier column distance reaches
the free distance. We did not investigate whether any of the other codes is optimal in
this sense.

(d) We investigated the binary codes with respect of being even, that is, whether all code-
words have even weight. This can be done by computing the weight distribution (see [17]
or [9, Sec. 3.10]). Evenness of a code is indicated by an (even) attached to the generator
matrix. Since the computation of the full weight distribution is very complex for larger
complexity, we did not fully check the binary codes having complexity bigger than 6. In
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those cases we checked the weight of codewords associated with message words of small
degree. In case this weight is always even we think there is strong evidence that the
code is even and attached an (even?) to the generator matrix. In this sense there is also
evidence that the (7, 3, 12; 4)2-code is doubly even, that is, all codewords have weight
divisible by 4. Further investigation is necessary in order to understand whether (and
why) all the binary cyclic convolutional codes of length 7 and 15 are even.

(e) The second and third code of Table I show that a code meeting the Griesmer bound
need not have evenly distributed Forney indices. In other words, such a code need not
be compact in the sense of Theorem 3.3(b). For both codes in Table I the free distance is
attained by the 10th column distance. Only the full weight distribution shows that the
code with Forney indices 3, 3 is better than the code with indices 4, 2. The first one has
weight distribution

W1(T ) = 10T 12 + 12T 14 + 71T 16 + 248T 18 + 873T 20 + . . . ,

saying that there are 10 molecular codewords of weight 12 and 12 molecular codewords of
weight 14, etc. (for the definition of molecular codewords, see [17]; for weight distributions
see also [9, Sec. 3.10]). The weight distribution of the second code is

W2(T ) = 10T 12 + 27T 14 + 99T 16 + 350T 18 + 1280T 20 + . . . .

(f) It is worth being mentioned that the codes with parameters (7, 3, 3; 1)2, (7, 3, 6; 2)2, and
(7, 3, 9; 3)2 form a sequence in the sense that if one deletes z3 (resp. z2) in the last
(resp. second) of the according generator matrices then one obtains the previous code.
The same applies to the codes with parameters (3, 1, 1; 1)4, . . . , (3, 1, 5; 5)4 as well as to
the (5, 2, 2; 1)4- and (5, 2, 4; 2)4-codes.

(g) The codes with parameters (7, 3, 3; 1)2, (7, 3, 6; 2)2, (15, 4, 4; 1)2 and (15, 4, 8; 2)2 are ex-
tremely robust against puncturing in the sense of cutting columns of the according gen-
erator matrix (this is not puncturing in the sense of [16, Sec. 8]). This way we do not
only obtain right invertible matrices again, but even minimal matrices and, by doing
this appropriately, codes reaching the Griesmer bound. We have cut one column of the
codes of length 7 and up to 7 columns of the codes of length 15. The results are given
in Table III. The only cases where we did not get codes reaching the Griesmer bound
are for (11, 4, 4; 1)2 and for (9, 4, 8; 2)2. We do not know if for these parameters there
exist any codes at all that reach the bound. Since G2(9, 4, 4; 1) = 8 = G2(8, 4, 4; 1) and
G2(11, 4, 8; 2) = 16 = G2(10, 4, 8; 2) we skipped in both cases the bigger length. Punc-
turing the code of length 7 and memory bigger than 2 did not result in a code meeting
the Griesmer bound. We did not puncture the code of length 15 and memory 3.

(h) Consider the (8, 4, 4; 1)2-code given in Table III. There are other codes with exactly these
parameters given in the literature. Indeed, in [8] some (doubly-even self-dual) (8, 4, 4; 1)2-
codes are presented. Our code is not even, which can easily be seen by writing down the
generator matrix. We also computed the weight distribution and obtained

W (T ) =11T 8 + 28T 9 + 39T 10 + 101T 11 + 206T 12 + 565T 13 + 1374T 14 + 3033T 15

+ 7366T 16 + 16984T 17 + 40510T 18 + 95617T 19 + 22348T 20 + . . . ,

which is better than the weight distribution of the self-dual code given in [8, Eq. (10)].
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5 Cyclic Convolutional Codes

The first two tables of the last section list plenty of optimal codes that we have declared as
cyclic. Moreover, they gave rise to further sets of optimal codes as listed in Table III. In this
section we want to briefly describe the notion of cyclicity for convolutional codes. The first
investigations in this direction have been made in the seventies by Piret [18] and Roos [19]. In
both papers it has been shown (with different methods and in different contexts) that cyclicity
of convolutional codes must not be understood in the usual sense, i. e. invariance under the
cyclic shift, if one wants to go beyond the theory of cyclic block codes (see Theorem 5.2 below).
As a consequence, Piret suggested a more complex notion of cyclicity which then has been
further generalized by Roos. In both papers some nontrivial examples of cyclic convolutional
codes in this new sense are presented along with their distances. All this indicates that the new
notion of cyclicity seems to be the appropriate one in the convolutional case. Unfortunately,
the papers [18, 19] did not get much attention at that time and the topic came to a halt.
Only recently it has been resumed in [5]. Therein, an algebraic theory of cyclic convolutional
codes has been established which goes well beyond the results of the seventies. On the one
hand it leads to a nice, yet nontrivial, generalization of the theory of cyclic block codes, on
the other hand it gives a very powerful toolbox for constructing cyclic convolutional codes.
We will now give a very brief description of these results and refer to [5] for the details.

Just like for cyclic block codes we assume from now on that the length n and the field size q
are coprime. Let F = Fq be a field of size q. Recall that a block code C ⊆ Fn is called cyclic
if it is invariant under the cyclic shift, i. e.

(v0, . . . , vn−1) ∈ C =⇒ (vn−1, v0, . . . , vn−2) ∈ C (5.1)

for all (v0, . . . , vn−1) ∈ Fn. It is well-known that this is the case if and only if C is an ideal in
the quotient ring

A := F[x]/〈xn − 1〉 =
{ n−1∑

i=0

fix
i mod (xn − 1)

∣∣∣ f0, . . . , fn−1 ∈ F
}

, (5.2)

identified with Fn in the canonical way via

p : Fn −→ A, (v0, . . . , vn−1) 7−→
n−1∑
i=0

vix
i.

At this point it is important to recall that the cyclic shift in Fn translates into multiplication
by x in A, i. e.

p(vn−1, v0, . . . , vn−2) = xp(v0, . . . , vn−1) (5.3)

for all (v0, . . . , vn−1) ∈ Fn. Furthermore, it is well-known that each ideal I ⊆ A is principal,
hence there exists some g ∈ A such that I = 〈g〉. One can even choose g as a monic divisor
of xn−1, in which case it is usually called the generator polynomial of the code p−1(I) ⊆ Fn.

It is our aim to extend this structure to the convolutional setting. The most convenient way
to do so is by using only the polynomial part C ∩F[z]n of the convolutional code C ⊆ F((z))n.
Recall from (2.2) that this uniquely determines the full code. Hence imposing some additional
structure on the polynomial part (that is, on the generator matrix) will also impose some
additional structure on the full code. In Remark 5.6 below we will see from hindsight that one
can just as well proceed directly with the full code. The polynomial part of a convolutional
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code is always a submodule of the free module F[z]n. Due to the right invertibility of the
generator matrix not every submodule of F[z]n arises as polynomial part of a convolutional
code. It is easy to see [5, Prop. 2.2] that we have

Remark 5.1 A submodule S ⊆ F[z]n is the polynomial part of some convolutional code if
and only if S is a direct summand of F[z]n, i.e. S⊕S ′ = F[z]n for some submodule S ′ ⊆ F[z]n.

In order to extend the situation of cyclic block codes to the convolutional setting, we have
to replace the vector space Fn by the free module F[z]n and, consequently, the ring A by the
polynomial ring

A[z] :=
{ N∑

j=0

zjaj

∣∣∣ N ∈ N0, aj ∈ A
}

over A. Then we can extend the map p above coefficientwise to polynomials, thus

p : F[z]n −→ A[z],
N∑

j=0

zjvj 7−→
N∑

j=0

zjp(vj), (5.4)

where, of course, vj ∈ Fn and thus p(vj) ∈ A for all j. This map is an isomorphism of
F[z]-modules. Again, by construction the cyclic shift in F[z]n corresponds to multiplication
by x in A[z], that is, we have (5.3) for all (v0, . . . , vn−1) ∈ F[z]n. At this point it is quite
natural to call a convolutional code C ⊆ F((z))n cyclic if it is invariant under the cyclic shift,
i. e. if (5.1) holds true for all (v0, . . . , vn−1) ∈ F((z))n. This, however, does not result in any
codes other than block codes due to the following result, see [18, Thm. 3.12] and [19, Thm. 6].
An elementary proof can be found at [5, Prop. 2.7].

Theorem 5.2 Let C ⊆ F((z))n be an (n, k, δ)-convolutional code such that (5.1) holds true
for all (v0, . . . , vn−1) ∈ F[z]n. Then δ = 0, hence C is a block code.

This result has led Piret [18] to suggest a different notion of cyclicity for convolutional codes.
We will present this notion in the slightly more general version as it has been introduced by
Roos [19].

In order to do so notice that F can be regarded as a subfield of the ring A in a natural way.
As a consequence, A is an F-algebra, i. e., a ring and a vector space over the field F and the
two structures are compatible. In the sequel the automorphisms of A with respect to this
algebra structure will play an important role. Therefore we define

AutF(A) :=
{
σ : A → A

∣∣ σ|F = idF, σ is bijective, σ(a+· b) = σ(a)+·σ(b) for all a, b ∈ A
}
.

It is clear that each automorphism σ ∈ AutF(A) is uniquely determined by the single value
σ(x) ∈ A. But not every choice for σ(x) determines an automorphism on A. Since x generates
the F-algebra A, the same has to be true for σ(x) and, more precisely, we obtain for a ∈ A

σ(x) = a determines an
automorphism on A

}
⇐⇒

{
1, a, . . . , an−1 are linearly independent over F
and an = 1.

(5.5)

Of course, σ(x) = x determines the identity map on A. It should be mentioned that there is
a better way to determine the automorphism group of A by using the fact that the ring is
direct product of fields. This is explained in [5, Sec. 3].

The main idea of Piret was to impose a new ring structure on A[z] and to call a code cyclic
if it is a left ideal with respect to that ring structure. The new structure is non-commutative
and based on an (arbitrarily chosen) automorphism on A. In detail, this looks as follows.
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Definition 5.3 Let σ ∈ AutF(A).
(1) On the set A[z] we define addition as usual and multiplication via

N∑
j=0

zjaj ·
M∑
l=0

zlbl =
N+M∑
t=0

zt
∑

j+l=t

σl(aj)bl for all N, M ∈ N0 and aj , bl ∈ A.

This turns A[z] into a non-commutative ring which is denoted by A[z;σ].
(2) Consider the map p : F[z]n→A[z;σ] as in (5.4), where now the images p(v)=

∑N
j=0 zjp(vj)

are regarded as elements of A[z;σ]. A direct summand S ⊆ F[z]n is said to be σ-cyclic if
p(S) is a left ideal in A[z;σ].

(3) A convolutional code C ⊆ F((z))n is said to be σ-cyclic if C ∩ F[z]n is a σ-cyclic direct
summand.

A few comments are in order. First of all, notice that multiplication is determined by the
rule

az = zσ(a) for all a ∈ A (5.6)

along with the rules of a (non-commutative) ring. Hence, unless σ is the identity, the inde-
terminate z does not commute with its coefficients. Consequently, it becomes important to
distinguish between left and right coefficients of z. Of course, the coefficients can be moved
to either side by applying the rule (5.6) since σ is invertible. Multiplication inside A remains
the same as before. Hence A is a commutative subring of A[z;σ]. Moreover, since σ|F = idF,
the classical polynomial ring F[z] is a commutative subring of A[z;σ], too. As a consequence,
A[z;σ] is a left and right F[z]-module and the map p : F[z]n → A[z;σ] is an isomorphism of
left F[z]-modules (but not of right F[z]-modules). In the special case where σ = idA the ring
A[z;σ] is the classical commutative polynomial ring and we know from Theorem 5.2 that no
σ-cyclic convolutional codes with nonzero complexity exist.

Example 5.4 Let us consider the case where F = F2 and n = 7. Thus A = F[x]/〈x7 − 1〉.
Using (5.5) one obtains 18 automorphisms, also listed at [19, p. 680, Table II] (containing
one typo: the last element of that table has to be x2 + x3 + x4 + x5 + x6 rather than
x + x3 + x4 + x5 + x6).
Let us choose the automorphism σ ∈ AutF(A) defined by σ(x) = x5. Furthermore, we
consider the polynomial

g := 1 + x2 + x3 + x4 + z(x + x2 + x3 + x5) ∈ A[z;σ]

and denote by
•〈 g 〉 := {fg | f ∈ A[z;σ]} the left ideal generated by g in A[z;σ]. Moreover,

put S := p−1(
•〈 g 〉) ⊆ F[z]7. We will show now that S is a direct summand of F[z]7, hence

S = C ∩ F[z]7 for some convolutional code C ⊆ F((z))7, see Remark 5.1. In order to do so we
first notice that

•〈 g 〉 = span F[z]

{
g, xg, . . . , x6g

}
and therefore

S =
{
uM

∣∣ u ∈ F[z]7
}

where M =


p−1(g)
p−1(xg)

...
p−1(x6g)

 .

18



Thus we have to compute xig for i = 1, . . . , 6. Using the multiplication rule in (5.6) we obtain

xg = x + x3 + x4 + x5 + z(1 + x + x3 + x6),

x2g = x2 + x4 + x5 + x6 + z(x + x4 + x5 + x6),

x3g = 1 + x3 + x5 + x6 + z(x2 + x3 + x4 + x6)

= g + x2g.

Since x3g is in the F-span of the previous elements, we obtain
•〈 g 〉 = span F[z]

{
g, xg, x2g

}
and, since p is an isomorphism,

S =
{
uG

∣∣ u ∈ F[z]3
}
,

where

G =

 p−1(g)
p−1(xg)
p−1(x2g)

 =

1 z 1 + z 1 + z 1 z 0
z 1 + z 0 1 + z 1 1 z
0 z 1 0 1 + z 1 + z 1 + z

 .

One can easily check that the matrix G is right invertible. Hence S is indeed a direct summand
of F[z]7 and thus we have obtained a σ-cyclic convolutional code C = im G ⊆ F((z))7. This is
exactly the (7, 3, 3; 1)2-code given in Table I of the last section.

The other cyclic convolutional codes in Tables I and II are obtained in a similar way. Since
the underlying automorphism cannot easily be read off from the generator matrix of a cyclic
convolutional code we will, for sake of completeness, present them explicitly in the following
table. All those codes come from principal left ideals in A[z;σ] and, except for the codes with
parameters (3, 2, 3; 2)16, (5, 2, 2; 1)16, (7, 2, 3; 2)8, the generator polynomial can be recovered
from the given data by applying the map p to the first row of the respective generator matrix.
The generator matrices of the remaining three codes are built in a slightly different way. In
those cases each row of the given matrix generates a 1-dimensional cyclic code and thus each
of those three codes is the direct sum of two 1-dimensional cyclic codes. In each case a
generator polynomial of the associated principal left ideal is obtained by applying p to the
sum of the two rows of the respective generator matrix.

Table IV

(n, k, δ; m)q-code of Tables I and II automorphism given by

(7, 3, 3m; m)2, m = 1, . . . , 4 σ(x) = x5

(15, 4, 4; 1)2 σ(x) = x + x7 + x10

(15, 4, 4m; m)2, m = 2, 3 σ(x) = x3 + x5 + x7 + x10 + x12 + x13 + x14

(3, 1, δ; δ)4, δ = 1, . . . , 5 σ(x) = α2x

(5, 2, 2m; m)4, m = 1, 2, 3 σ(x) = x2

(3, 2, 2; 1)16 and (3, 2, 3; 2)16 σ(x) = γ10x

(5, 1, δ; δ)16, δ = 1, 2, 3 and (5, 2, 2; 1)16 σ(x) = x3

(7, 1, δ; δ)8, δ = 1, 2 and (7, 2, 3; 2)8 σ(x) = x5

(7, 1, 3; 3)8 σ(x) = βx + βx2 + β3x3 + β3x4 + β3x5 + β2x6

The fact that all the cyclic convolutional codes above come from principal left ideals in A[z;σ]
is not a restriction since we have the following important result.
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Theorem 5.5 Let σ ∈ AutF(A). If S ⊆ F[z]n is a σ-cyclic direct summand, then p(S) is
a principal left ideal of A[z;σ], that is, there exists some polynomial g ∈ A[z;σ] such that
p(S) =

•〈 g 〉. We call g a generator polynomial of both S and the σ-cyclic convolutional code
C ⊆ F((z))n determined by S, see Remark 5.1 and (2.2).

The generator polynomial of a σ-cyclic convolutional code can be translated into vector
notation and leads to a generalized circulant matrix. This looks as follows. Let S ⊆ F[z]n be
a σ-cyclic direct summand and let p(S) =

•〈 g 〉. Define

Mσ(g) =


p−1(g)
p−1(xg)

...
p−1(xn−1g)

 ∈ F[z]n×n.

Then it is easy to see that p
(
uMσ(g)

)
= p(u)g for all u ∈ F[z]n (see [5, Prop. 6.8(b)]) and

therefore, S =
{
uMσ(g)

∣∣ u ∈ F[z]n
}
. We call Mσ(g) the σ-circulant associated with g.

Remark 5.6 Using the identities above we can now easily see that σ-cyclic structure can
also be considered without restricting to the polynomial part. Just like the polynomial ring
A[z] we can turn the set A((z)) of formal Laurent series over A into a non-commutative ring by
defining addition as usual and multiplication via (5.6). We will denote the ring obtained this
way by A((z;σ)). Furthermore, we can extend the map p to Laurent series in the canonical
way, see also (5.4). Then one can easily show that just like in the polynomial case

p
(
uMσ(g)

)
= p(u)g for all u ∈ F((z))n

for each g ∈ A[z;σ]. Using the fact that a code C ⊆ F((z))n is uniquely determined by its
polynomial part (see (2.2)), and that the latter is a principal left ideal in A[z;σ] due to
Theorem 5.5, one can now derive the equivalence

C ⊆ F((z))n is σ-cyclic ⇐⇒ p(C) is a left ideal in A((z;σ)).

Moreover, if C is σ-cyclic, a generator polynomial of the ideal p(C ∩ F[z]n) in A[z;σ] is also a
principal generator of the ideal p(C) in A((z;σ)). This justifies to call g a generator polynomial
of the full code C as we did in Theorem 5.5.

At this point the question arises as to how a (right invertible) generator matrix can be
obtained from the σ-circulant Mσ(g). Notice that in Example 5.4 the generator matrix of
the code is simply given by the first three rows of the circulant. This is indeed in general
the case, but requires a careful choice of the generator polynomial g of the code. Recall
that, due to zero divisors in A[z;σ], the generators of a principal left ideal, are highly non
unique. The careful choice of the generator polynomial is based on a Gröbner basis theory
that can be established in the non-commutative polynomial ring A[z;σ]. This is a type of
reduction procedure resulting in unique generating sets of left ideals which in turn produce
very powerful σ-circulants. The details of this theory goes beyond the scope of this paper and
we refer the reader to [5] for the details, in particular to [5, Thm. 7.8, Thm. 7.18]. Therein
it has been shown that a reduced generator polynomial also reflects the parameters of the
code, i. e., the dimension and the complexity, and even leads to a minimal generator matrix
through σ-circulants. Only with these results it becomes clear that cyclic convolutional codes
can have only very specific parameters (length, dimension, and complexity) depending on the
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chosen field Fq. Furthermore, the notions of parity check polynomial and associated parity
check matrix have been discussed in detail in [5], leading to a generalization of the block code
situation.

As for the cyclic codes of the last section we only would like to mention that their generator
polynomials obtained as explained right before Table IV are all reduced in the sense above.

So far we do not have any estimates for the distance of a cyclic convolutional code in terms of
its (reduced) generator polynomial and the chosen automorphism. The examples given in the
last section have been found simply by trying some promising reduced generator polynomials
(using the algebraic theory of [5]). Except for the puncturing in Table III we did not perform
a systematic search for optimal codes.

Conclusion

In this paper we gave many examples of cyclic convolutional codes that all reach the Griesmer
bound. The examples indicate that this class of convolutional codes promises to contain
many excellent codes and therefore deserves further investigation. As one of the next steps
the relation between the (reduced) generator polynomial and the automorphism on the one
hand and the distance on the other hand should be investigated in detail.
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