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CH-8057 Zürich, Switzerland
e-mail: rosen@ieee.org

Roxana Smarandache

Department of Mathematics and Statistics
San Diego State University

5500 Campanile Dr.
San Diego, CA 92182-7720, USA

e-mail: rsmarand@sciences.sdsu.edu

October 13, 2005

Abstract

MDS convolutional codes have the property that their free distance is maximal among
all codes of the same rate and the same degree. In this paper a class of MDS convo-
lutional codes is introduced whose column distances reach the generalized Singleton
bound at the earliest possible instant. Such codes are called strongly-MDS convolu-
tional codes. They also have a maximum or near maximum distance profile. The
extended row distances of these codes will also briefly be discussed.

Keywords: column distances, convolutional codes, extended row distances, MDS
codes, superregular matrices, unit memory codes.

I. INTRODUCTION

In comparison to the literature on linear block codes there exist only relatively few algebraic

constructions of convolutional codes having some good designed distance. There are even

fewer algebraic decoding algorithms which are capable of exploiting the algebraic structure

of the code.

∗The research of this paper was presented at the 2002 IEEE International Symposium on Information
Theory in Lausanne, Switzerland, June 30–July 5, 2002 and at the International Symposium on the Math-
ematical Theory of Networks and Systems (MTNS), University of Notre Dame, August, 12–16 2002. The
authors were supported in part by NSF grants DMS-00-72383 and CCR-02-05310.
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A large part of the literature on convolutional codes studies codes over the binary field.

Codes are then typically presented by trellis and state diagrams and the decoding algorithm

of choice is the Viterbi algorithm. The reader is referred to the standard books [1, 2] or the

more recent articles [3, 4, 5] where also further references to the literature can be found.

In the early seventies there were some important constructions done for convolutional

codes over large alphabets and we would like to mention the papers [6, 7, 8, 9] and the

monograph by Piret [10]. In [7, 8] Justesen and Hughes study the question on how large the

free distance of a convolutional code over a large alphabet can be. In [11] the authors of the

present paper derived a generalized Singleton bound and they define a convolutional code

to be MDS if its free distance reaches this upper bound. Using a construction idea due to

Justesen [6] they provided in [12] a first concrete construction of MDS convolutional codes

for all rates and degrees.

In [13] the class of cyclic convolutional codes, as first introduced by Piret [14] and

Roos [15], has been studied. It turned out that many of the constructed codes were MDS

and/or were codes over large alphabets with excellent distance profile. More recently Goppa

convolutional codes have been introduced in [16] and many of these codes have excellent

distances, too.

In this paper we will consider the problem of constructing codes with a rapid growth of

their column distances. These distance parameters have been introduced by Costello in [17]

and have been studied by many authors since. See e.g. [1, 18] and the references therein.

Algorithmic searches for codes with large column distances have been carried out for

instance in [19, 20]. We will now attack the question of convolutional codes with large

column distances from the theoretical side. First we will discuss how big these distances can

possibly be, thereby introducing a new class of convolutional codes which we call strongly-

MDS convolutional codes. These are codes with a column distance profile such that the free

distance, i.e. the generalized Singleton bound is reached at the earliest possible stage. The

main part of the paper will be about existence and construction of such codes. At the end of

the paper we will also use our methods in order to briefly discuss the extended row distances

of these codes in case they have unit memory. As opposed to the column distances the

extended row distances also grow beyond the free distance and thus contain some additional

information about the performance of the code.

Convolutional codes over large alphabets are interesting both from a purely theoretical

as well as from an applications point of view. On the theory side the following questions

arise naturally: How large can the free distance of a convolutional code of some fixed rate

and fixed degree be? How to construct codes which achieve a maximal free distance? How

good can the column and row distance profile of these codes be?

From a practical point of view we can identify a convolutional code over a finite alpha-

bet with a finite linear state machine (LFSM) having redundancy and which is capable of

correcting processing errors. In a series of recent papers [21, 22, 23] Hadjicostis and Vergh-

ese showed how to error protect a given LFSM with a larger redundant LFSM capable of

detecting and correcting state transition errors. The detection and correction of errors is
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done using non-concurrent measurements of the state vectors of the redundant LFSM. The

construction of the redundant system boils down to the construction of convolutional codes

with good free distance over an alphabet which is in general non-binary.

Let F be any finite field and let F[D] be the polynomial ring. For the definition of a

convolutional code we take a module theoretic point of view [24, 25].

Definition 1.1 A convolutional code of rate k/n is a submodule C ⊆ F[D]n of rank k such

that there exists a k × n polynomial encoder matrix G ∈ F[D]k×n, which is basic, i.e. G

has a polynomial right inverse, and which is minimal, i.e. the sum of the row degrees of G

attains the minimal possible value, such that

C := {uG | u ∈ F[D]k} ⊆ F[D]n.

We define the degree of C as the sum of the row degrees of one, and hence any, minimal basic

encoder.

In the sequel we will adopt the notation used by McEliece [26, p. 1082] and call a convolu-

tional code of rate k/n and degree δ an (n, k, δ) code. Every (n, k, δ) code C can be presented

in terms of a parity check matrix H ∈ F[D](n−k)×n, i. e., C = {v ∈ F[D]n | vHT = 0}. It is

clear that we can choose H to be basic and minimal and we will do so throughout the paper.

Notice also that GHT = 0 for any generator matrix G of C.

The weight of a vector v =
∑L

j=0 vjD
j ∈ F[D]n is defined as wt(v) :=

∑L
j=0 wt(vj) ∈ N0

where wt(vj) denotes the Hamming weight of vj ∈ Fn. The free distance of the code C ⊂
F[D]n is given as dfree := min{wt(v) | v ∈ C, v 6= 0}. Since we assume that G ∈ F[D]k×n is

minimal and basic, we also have

dfree = min
{
wt(v)

∣∣ v = uG for some u ∈ F[D]k\{0}, u0 6= 0
}
.

In Theorem 2.6 we will recall from the paper [11] an upper bound on dfree based on the

parameters (n, k, δ). It generalizes the Singleton bound from block code theory and will play

a central role in our paper.

The paper is structured as follows: In Section II we review notions from convolutional

coding theory such as column distances, the generalized Singleton bound and we introduce

the important concepts for this paper, namely the property of being strongly-MDS and

having a maximum distance profile. In Section III we show the existence of strongly-MDS

codes of rate k/n with n− k | δ. In order to do so we introduce the interesting concept of a

superregular matrix which could be of independent interest. In Section IV we illustrate these

concepts through a series of examples. In Section V we investigate to what extend properties

of MDS, strongly-MDS and maximum distance profile carry over to the dual code. The main

result of this section states that a code has a maximum distance profile if and only if its dual

has this property. This allows us then to show that for certain specific parameters a code is

strongly-MDS if and only if its dual is strongly-MDS. Finally, in Section VI we will derive a

lower bound for the extended row distances.
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II. STRONGLY-MDS CODES AND CODES WITH MAXIMUM DISTANCE PROFILE

Let C ⊆ F[D]n be an (n, k, δ) code with basic minimal generator matrix

G =
ν∑

j=0

GjD
j ∈ F[D]k×n, Gj ∈ Fk×n, Gν 6= 0 (2.1)

and basic parity check matrix

H =

µ∑
j=0

HjD
j ∈ F[D](n−k)×n, Hj ∈ F(n−k)×n, Hµ 6= 0. (2.2)

Notice that ν is the memory of the code. For every j ∈ N0 the truncated sliding generator

matrices Gc
j ∈ F(j+1)k×(j+1)n and parity check matrices Hc

j ∈ F(j+1)(n−k)×(j+1)n are given by

Gc
j :=


G0 G1 . . . Gj

G0 . . . Gj−1

. . .
...

G0

 , Hc
j :=


H0

H1 H0
...

...
. . .

Hj Hj−1 . . . H0

 , (2.3)

where we let Gj = 0 (resp. Hj = 0) whenever j > ν (resp. j > µ), see also [1, p. 110]. The

identity GHT = 0 and the full rank of G0 and H0 immediately imply the full rank of the

sliding matrices as well as the identities {uGc
j | u ∈ F(j+1)k} = {v ∈ F(j+1)n | v(Hc

j )
T = 0} for

all j ∈ N0. Using these equations and following [1, pp. 110], the jth column distance of C is

given as

dc
j = min

{
wt

(
(u0, . . . , uj)G

c
j

) ∣∣ ui ∈ Fk, u0 6= 0
}

(2.4)

= min{wt(v̂) | v̂ = (v̂0, . . . , v̂j) ∈ F(j+1)n, v̂(Hc
j )

T = 0, v̂0 6= 0}. (2.5)

The column distances are invariants of the code, i. e., they do not depend on the choice of

the generator matrix (see [1, Sec. 3.1]), and satisfy

dc
0 ≤ dc

1 ≤ dc
2 . . . ≤ lim

j→∞
dc

j = dfree. (2.6)

The (ν +1)-tuple of numbers (dc
0, d

c
1, d

c
1, . . . , d

c
ν), where ν is the memory, is called the column

distance profile of the code [1, p. 112].

Equation (2.5) immediately implies the following simple fact used several times in the

paper.

Proposition 2.1 Let d ∈ N. Then the following properties are equivalent.

(a) dc
j = d;

(b) none of the first n columns of Hc
j is contained in the span of any other d − 2 columns

and one of the first n columns of Hc
j is in the span of some other d− 1 columns of that

matrix.
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We leave it to the reader to verify the equivalence of the statements. The following upper

bound on the column distances is an immediate consequence of the previous result, along

with the fact that Hc
j has full row rank.

Proposition 2.2 For every j ∈ N0 we have

dc
j ≤ (n− k)(j + 1) + 1.

This observation has already been made in the context of systematic convolutional codes

in [8] and in [27]. The next proposition shows that maximality of dc
j implies maximality of

the preceding column distances.

Corollary 2.3 If dc
j = (n− k)(j + 1) + 1 for some j ∈ N0, then dc

i = (n− k)(i + 1) + 1 for

all i ≤ j.

Proof: It suffices to prove the assertion for i = j − 1. In order to do so notice that

Hc
j =


0

Hc
j−1

...

0

Hj Hj−1 · · · H1 H0


and assume that one of the first n columns of Hc

j−1 is in the span of some other (n− k)j− 1

columns. Then rank H0 = n − k implies that one of the first n columns of Hc
j is in the

span of some other (n− k)j − 1 + n− k = (n− k)(j + 1)− 1 columns of Hc
j . But this is a

contradiction to the optimality of dc
j by Proposition 2.1.

The following characterizations of the jth column distance being maximal will be useful

later on for constructing strongly-MDS codes and also when considering duality in Section V.

Theorem 2.4 Let Gc
j and Hc

j be as in (2.3). Then the following are equivalent.

(i) dc
j = (n− k)(j + 1) + 1,

(ii) every (j + 1)k × (j + 1)k full-size minor of Gc
j formed from the columns with indices

1 ≤ t1 < . . . < t(j+1)k, where tsk+1 > sn for s = 1, . . . , j, is nonzero,

(iii) every (j +1)(n− k)× (j +1)(n− k) full-size minor of Hc
j formed from the columns with

indices 1 ≤ r1 < . . . < r(j+1)(n−k), where rs(n−k) ≤ sn for s = 1, . . . , j, is nonzero.

Notice that the index condition in part (ii) simply says that for each s the minors under

consideration have at most sk columns out of the first sn columns of Gc
j. Clearly, all other

full size minors of Gc
j are singular. The proof of this purely matrix theoretical result will be

given in Appendix A. The next corollary will provide a link of our results to the existing

literature later in this section. It will also be helpful for the construction of codes with

maximum column distances in the next section.
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Corollary 2.5 Let G = [I, P ] be a systematic matrix of memory ν and let P =
∑ν

i=0 PiD
i ∈

F[D]k×(n−k) where Pν 6= 0. Then the following are equivalent for j = 0, . . . , ν.

(i) dc
j = (n− k)(j + 1) + 1,

(ii) each i× i-submatrix of

P̂ :=


P0 P1 . . . Pj

P0 . . . Pj−1

. . .
...

P0

 ∈ F(j+1)k×(j+1)(n−k)

that does not contain an s×t-zero block for some s, t such that s+t ≥ i+1 is nonsingular.

If one of these conditions is satisfied, then all entries of the matrices P0, . . . , Pj are nonzero.

This result appeared already in [27]. However, since the paper is not easily accessible and

no detailed proof is provided, we added a proof in Appendix A. We will come back to the

relation of our work with [27] at the end of this section.

In the sequel we will relate the upper bound for the column distances to an upper bound

for the free distance of the code. The maximum possible value for the free distance of a

convolutional code over any field has been established in [11]. Therein the following has

been shown.

Theorem 2.6 The free distance of an (n, k, δ) code satisfies

dfree ≤ (n− k)
(⌊ δ

k

⌋
+ 1

)
+ δ + 1. (2.7)

Notice that if δ = 0 the number on the right hand side of (2.7) reduces to the usual Singleton

bound n − k + 1 for an (n, k) block code. Therefore we call this number the generalized

Singleton bound and codes whose distance attains this bound will be called MDS codes. It

has been shown in [11] that for every set of parameters (n, k, δ) and every prime number p

there exists a suitably large finite field F of characteristic p and an MDS code with parameters

(n, k, δ) over F. The proof is based on techniques from algebraic geometry and is non-

constructive. In [12] a construction of MDS codes with parameters (n, k, δ) was given for

suitably large fields of characteristic coprime with n.

In the sequel we will strengthen the MDS property by requiring that the generalized

Singleton bound is attained by the earliest column distance possible. This will lead us to

the notion of a strongly-MDS code.

Proposition 2.7 Suppose C be an (n, k, δ) MDS code with column distances dc
j, j ∈ N0,

and free distance dfree. Let M := min{j ∈ N0 | dc
j = dfree}. Then

M ≥
⌊ δ

k

⌋
+

⌈ δ

n− k

⌉
.
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Proof: From Proposition 2.2 we get

dfree = (n− k)
(⌊ δ

k

⌋
+ 1

)
+ δ + 1 = dc

M ≤ (n− k)(M + 1) + 1. (2.8)

This yields the assertion.

The proof also shows that in the case j > b δ
k
c + d δ

n−k
e the column distance dc

j never

attains the upper bound (n− k)(j + 1) + 1 of Proposition 2.2, see also (2.6).

Definition 2.8 An (n, k, δ) code with column distances dc
j, j ∈ N0, is called strongly-MDS,

if

dc
M = (n− k)

(⌊ δ

k

⌋
+ 1

)
+ δ + 1 for M =

⌊ δ

k

⌋
+

⌈ δ

n− k

⌉
.

Because of (2.6) strongly-MDS codes are in particular MDS codes.

In the case where (n−k) | δ, the strong MDS property implies that dc
M attains the upper

bound (n− k)(M + 1) + 1, see Proposition 2.1. Hence Corollary 2.3 shows that in this case

all column distances attain their optimum value. In other words, the column distances are

(dc
0, dc

1, dc
2, . . .) = (n− k + 1, 2(n− k) + 1, . . . ,M(n− k) + 1, S, S, . . .) (2.9)

where S = (M + 1)(n − k) + 1. If (n − k) - δ, we always have dc
M < (n − k)(M + 1) + 1

as can be seen from (2.8). In this case nothing can be concluded for the previous column

distances. In order to also incorporate optimality of dc
0, . . . , d

c
M−1 in this general case we

pose the following definition.

Definition 2.9 Let

L :=
⌊ δ

k

⌋
+

⌊ δ

n− k

⌋
. (2.10)

An (n, k, δ) code with column distances dc
j, j ∈ N0, is said to have a maximum distance

profile if

dc
j = (n− k)(j + 1) + 1, for j = 1, . . . , L.

Using the notation of Definition 2.8 we have

L =

{
M if (n− k) | δ
M − 1 otherwise.

(2.11)

Obviously a strongly-MDS code with maximum distance profile satisfies (2.9) for S = (n−
k)(b δ

k
c+1)+ δ +1. Furthermore, we obtain that if n− k divides δ then an (n, k, δ) code has

maximum distance profile if and only if it is strongly-MDS. If n− k does not divide δ, then

neither property implies the other one as is verified by examples in 2.12 below.

An immediate consequence of Corollary 2.3 is
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Remark 2.10 An (n, k, δ) code has a maximum distance profile if and only if the Lth

column distance satisfies

dc
L = (n− k)(L + 1) + 1.

Remark 2.11 The concept is clearly related to the notion of optimum distance profile

(ODP), see [1, p. 112]. For ODP it is required that the column distances are maximal

up to the memory ν. Hence if ν ≤ L then a code with maximum distance profile is always

ODP. In general one expects a good code to have generic Forney indices, i.e. the indices

attain only the two values d δ
k
e and b δ

k
c. McEliece [26, Corollary 4.3] calls such codes compact

codes. It has been shown in [11] that an MDS code always has generic indices. Of course if

the indices are generic then ν = d δ
k
e and thus ν ≤ L + 1.

The notion of ODP seems also to be dependent on the base field which is usually assumed

to be the binary field. A code with maximum distance profile does in general not exist over

the binary field and it can only exist for sufficiently large base fields. This is similar to the

situation of MDS block codes. Such codes are known to exist as soon as the field size of F
is larger than the block length n.

We close this section with relating our work to previous results in the literature. As

indicated earlier, the papers [8, 27, 28] deal with a notion closely related to the bound

given in Proposition 2.2. In all these papers (n, k) convolutional codes with a systematic

generator matrix of memory m are considered and such codes are called MDS if dc
m =

(n− k)(m + 1) + 1. In order to avoid confusion, we will for the rest of this section call codes

that satisfy dc
m = (n−k)(m+1)+1, where m is the memory, m-MDS codes. It is easy to see

that the number (n− k)(m + 1) + 1 is the maximum possible value for the free distance of a

systematic convolutional code with these parameters. In the papers [27, 28] this property has

been characterized by the equivalence we presented in Corollary 2.5. In [27] matrices P̂ with

property (ii) of the corollary are called strongly nonsingular. In the case k = n − k = 1 we

will call such matrices superregular in the next section (see also Remark 3.7). In the same

paper [27] it is claimed that the problem of constructing superregular matrices has been

solved. Unfortunately this is not true. We will dwell on this in the next section. Therefore,

as to our knowledge, the problem of constructing strongly nonsingular matrices is still open.

Finally, we wish to verify that for general parameters the properties strongly-MDS, having

a maximum distance profile, and m-MDS are not related to each other, meaning that neither

of the properties implies the other ones. We list an according example for each case. The

column distances have been computed by using straightforward computer routines.

Example 2.12 (1) The (7, 1, 2) code over F8 given in Example 4.2(8) below is strongly-

MDS in our sense, but not m-MDS and therefore does not have a maximum distance

profile. In this case L = 2 and this is also the memory. It is worth being mentioned

that over F8 no (7, 1, 2) code with maximum distance profile exists and in particular

no systematic m-MDS code with these parameters exists. This can be shown by some

lengthy, but straightforward computations.
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(2) The (4, 1, 2) code over F16 with generator matrix[
z2 + αz + 1 z2 + αz + α3 z2 + α6z + α3 αz + α8

]
where α4 + α + 1 = 0

has a maximum distance profile (thus, by Corollary 2.3, is m-MDS), but is obviously not

MDS in our sense and therefore in particular not strongly-MDS.

(3) The code over F16 with generator matrix[
1 α14z + α2 α3z + α3

αz α11z + α8 α10z + α10

]
is m-MDS but does not have a maximum distance profile.

III. EXISTENCE OF STRONGLY-MDS CODES

During his investigation of algebraic decoding of convolutional codes B. Allen conjectured

in his dissertation [29] the existence of strongly-MDS convolutional codes in the situation

when k = 1 and n = 2. In this section we will show the existence of strongly-MDS codes

with parameters (n, k, δ) such that n − k divides δ. It follows from Equation (2.11) and

Remark 2.10 that these codes also have maximum distance profile. By Theorem 2.6 we have

to find an (n, k, δ) code where (n−k)|δ such that dc
M = (n−k)(M +1)+1 for M = b δ

k
c+ δ

n−k
.

In order to do so, put m := δ
n−k

and let

H = [A, B], where A =
m∑

i=0

AiD
i ∈ F[D](n−k)×(n−k) and B =

m∑
i=0

BiD
i ∈ F[D](n−k)×k (3.1)

be a basic parity check matrix of the desired code. Without loss of generality we may assume

A0 = In−k. The strongly-MDS property can now be expressed as follows.

Theorem 3.1 Let H ∈ F[D]n×(n−k) be as in (3.1), let A0 = In−k and define C := {v ∈
F((D))n | vHT = 0} to be the code with parity check matrix H. Furthermore, let

A−1B =
∞∑
i=0

PiD
i ∈ F((D))(n−k)×k (3.2)

be the Laurent expansion of A−1B over the field F((D)) of Laurent series and for M :=

b δ
k
c+ δ

n−k
define

Ĥ :=
[
I(M+1)(n−k) P̂

]
where P̂ :=


P0

P1 P0
...

...
. . .

PM PM−1 · · · P0

 (3.3)

We call Ĥ the Mth systematic sliding parity check matrix of C. The following conditions

are equivalent:
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(a) C is strongly-MDS, i. e. dc
M = (n− k)(M + 1) + 1,

(b) none of the first k columns of P̂ is contained in the span of any other (M +1)(n− k)− 1

columns of Ĥ,

(c) each j × j-submatrix of P̂ that does not contain an s× t-zero block where s + t ≥ j + 1

is nonsingular.

Notice that (b) automatically implies that none of the first n − k columns of Ĥ is in the

span of any other (M + 1)(n− k)− 1 columns.

Proof: After a column permutation the sliding parity check matrix Hc
M of C has the form

H ′ :=


I B0

A1 I B1 B0
...

...
. . .

...
...

. . .

AM AM−1 · · · I BM BM−1 · · · B0

 .

It is straightforward to see that left multiplication of H ′ by the inverse of the first block

leads to the matrix Ĥ of (3.3). After these transformations Proposition 2.1 applied to the

case j = M and d = (n− k)(M + 1) + 1 translates into the equivalence: C is strongly-MDS

if and only if neither any of the first k columns of H ′ nor any of the first n − k columns

of the second block of H ′ is in the span of any other (n − k)(M + 1) − 1 columns of Ĥ.

But this in turn is equivalent to (b) above. The equivalence of (a) and (c) is obtained from

Corollary 2.5.

In order to establish the existence of strongly-MDS codes we will proceed as follows.

Firstly, we will establish the existence of a systematic sliding parity check matrix Ĥ as

in (3.3) with property (c) of the theorem above. Thereafter, we will show that there exist a

basic polynomial matrix H = [A, B] ∈ F[D]n×(n−k) of degree δ such that

A−1B =
M∑
i=0

PiD
i + higher powers.

Theorem 3.1 then yields that the code with parity check matrix H is a strongly-MDS (n, k, δ)

code.

As for the first step, let us have a look at the special case of (2, 1, δ) codes. In this case

M = 2δ and the systematic sliding parity check matrix in (3.3) has the form

Ĥ :=


1 h0 0 · · · 0

1 h1 h0
. . .

...
. . .

...
. . . . . . 0

1 h2δ · · · h1 h0

 =: [I2δ+1, T ] ∈ F(2δ+1)×(4δ+2), where hj ∈ F.

(3.4)
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As we will see, the existence of matrices T of any given size and the structure above such

that Ĥ has the column property of Theorem 3.1(b) will be the main tool for the existence of

strongly-MDS codes even of length n > 2. Therefore we will concentrate on these matrices

first. The main point is to express the column condition on Ĥ in terms of the minors of T .

Definition 3.2 Let R be a ring. For a matrix T ∈ Rn×k denote by T i1,...,ir
j1,...,js

∈ Rr×s the

r× s-submatrix obtained from T by picking the rows with indices i1, . . . , ir and the columns

with indices j1, . . . , js.

In the sequel the following property will play a crucial role.

Definition 3.3 Let F be field. A lower triangular matrix T ∈ Fn×k is said to be superreg-

ular1, if T i1,...,ir
j1,...,jr

is nonsingular for all 1 ≤ r ≤ min{k, n} and all indices 1 ≤ i1 < . . . < ir ≤
n, 1 ≤ j1 < . . . < jr ≤ k which satisfy jν ≤ iν for ν = 1, . . . , r. We call the submatrices

obtained by picking such indices the proper submatrices and their determinants the proper

minors of T .

Obviously, a submatrix T̂ of T is proper if and only if no diagonal element of T̂ comes

from strictly above the diagonal of T .

Remark 3.4 Observe that the proper submatrices are the only submatrices which can pos-

sibly be nonsingular. This can be seen as follows. If jν > iν for some ν, then in the submatrix

T̂ := T i1,...,ir
j1,...,jr

the upper right block consisting of the first ν rows and the last r−ν+1 columns

is identically zero. Hence the first ν rows of T̂ can have at most rank ν − 1. In other words,

the improper submatrices of T are trivially singular. For example, for T = (hij) we have

T 1,2,5
1,3,4 =

h11 0 0

h21 0 0

h51 h53 h54

 .

Before we come to the existence of superregular matrices we will first present the following

collection of characterizations of superregular matrices.

Theorem 3.5 Let F be a field and T be a lower triangular Toeplitz matrix, i. e.

T = [T1, . . . , Tl] =


h0 0 · · · 0

h1 h0
. . .

...
...

. . . . . . 0

hl−1 · · · h1 h0

 ∈ Fl×l. (3.5)

Furthermore, put Ĥ := [Il, T ] = [e1, . . . , el, T1, . . . , Tl] ∈ Fl×2l. Then the following are

equivalent:

1We adopt this notion from [30], where it has been coined in a slightly different context.
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(a) T is superregular, i.e. all proper submatrices in the sense of Definition 3.3 are nonsin-

gular,

(b) All proper submatrices of T of the form T i1,i2,...,ir
1,j2,...,jr

where 1 ≤ i1 < . . . < ir ≤ n and

1 < j2 < . . . < jr ≤ k are nonsingular,

(c) wt
(
T1 +

∑s
j=1 βjTmj

)
≥ l − s for all 1 ≤ s ≤ l − 1, all 1 < m1 < . . . < ms ≤ l and all

β1, . . . , βs ∈ F,

(d) T1 6∈ span{Tm1 , . . . , Tms , el1 , . . . , elt} where 1 < m1 < . . . < ms ≤ l and 1 ≤ l1 < . . . <

lt ≤ l and s + t ≤ l − 1.

(e) If v ∈ F2l satisfies vĤT = 0 and vl+1 6= 0, then wt(v) ≥ l + 1.

(f) e1 6∈ span{Tm1 , . . . , Tms , el1 , . . . , elt} where 1 ≤ m1 < . . . < ms ≤ l and 1 < l1 < . . . <

lt ≤ l and s + t ≤ l − 1.

(g) If v ∈ F2l satisfies vĤT = 0 and v1 6= 0, then wt(v) ≥ l + 1.

Proof: (a) ⇔ (b) is obvious since in case of properness the Toeplitz structure implies

T i1,...,ir
j1,...,jr

= T i1−j1+1,...,ir−j1+1
j1−j1+1,...,jr−j1+1 .

(b) ⇒ (c): Let ĥ := T1 +
∑s

j=1 βjTmj
and assume to the contrary wt(ĥ) < l−s. This implies

that ĥ consists of at least s + 1 zero entries, say at the positions i1, . . . , is+1. Then

T
i1,...,is+1

1,m1,...,ms


1

β1
...

βs

 =


0

0
...

0

 . (3.6)

The superregularity yields mν > iν+1 for some ν ∈ {1, . . . , s}, which we can choose to be

minimal with this property. Then the submatrix T i1,...,iν+1
mν ,...,ms

is identically zero and therefore

we obtain from (3.6) the identity T i1,...,iν
1,m1,...,mν−1

(1, β1, . . . , βν−1)
T = 0, a contradiction to super-

regularity since by minimality of ν this coefficient matrix is nonsingular.

(c) ⇒ (b): Assume to the contrary that det T
i1,...,is+1

1,m1,...,ms
= 0 for some indices satisfying

mν ≤ iν+1 for ν = 1, . . . , s. We can assume s to be minimal with this property. Then

there exists (β0, β1, . . . , βs) ∈ Fs+1\{0} such that T
i1,...,is+1

1,m1,...,ms
(β0, . . . , βs)

T = 0. Minimality of

s and the equivalence of (a) and (b) imply β0 6= 0. Hence we can take β0 = 1 and (3.6) is

satisfied. Thus wt(T1 +
∑s

j=1 βjTmj
) ≤ l − (s + 1), a contradiction.

The properties (d) and (e) are simply reformulations of (c).

The equivalence (d) ⇔ (f) is clear from the structure of Ĥ (a linear combination of T1 by

the other columns of Ĥ has to involve the column e1 and vice versa).

The property (g) is a reformulation of (f).

The equivalence of (e) and (g) immediately implies

Corollary 3.6 If T ∈ Fl×l is a superregular lower triangular Toeplitz matrix, then so is T−1.

12



Using arguments as in the proof of Corollary 2.5 or by straightforward computations we

obtain again

Remark 3.7 Let T ∈ Fl×l be a lower triangular matrix with all elements on and below the

diagonal being nonzero. Let T̂ := T i1,...,ir
j1,...,jr

be a submatrix of T . Then T̂ is proper if and only

if T̂ does not contain an s× t-zero block where s + t ≥ r + 1.

Now we will turn to the existence of superregular matrices. As indicated already earlier,

there exists literature seemingly closely related to this problem, but unfortunately not solving

it. Indeed, in [31, 32] (see also [33, p. 322]) triangular configurations are constructed for

which all square submatrices inside the configuration are nonsingular. An example of such

a configuration over F8 is given by

1 1 1 1 1 1 1

1 (1− α)−1 (1− α2)−1 . . . . . . (1− α5)−1 (1− α6)−1

1 (1− α2)−1 . . . . . . (1− α5)−1 (1− α6)−1

...
...

1 (1− α6)−1

where α3 + α + 1 = 0. In [31, Thm. 3] and [32, p. 107] it has been shown that all square

submatrices inside this triangular configuration are nonsingular. However, the triangular

matrix

T :=


(1− α6)−1 0 0 . . . 0

(1− α5)−1 (1− α6)−1 0 . . . 0
...

. . . . . .
...

(1− α2)−1 (1− α3)−1 . . . (1− α6)−1 0

(1− α)−1 (1− α2)−1 . . . (1− α5)−1 (1− α6)−1

 ∈ F6×6
8

is not superregular, since, for instance, det T 2,3,4
1,2,3 = 0. The same applies to the triangular

configurations given in [31, Thm. 5]. As this example shows, the main obstacle for construct-

ing superregular matrices are those proper submatrices that are partly located in the zero

triangle of the matrix. This produces a type of irregularity making it hard to come up with

an algebraic construction of such matrices, even though the examples below in 3.10(1) indi-

cate that such construction should be possible. However, existence of superregular matrices,

even with Toeplitz structure, is guaranteed by the following lemma.

Lemma 3.8 Let F be a field and X1, . . . , Xl be independent indeterminates over F. Define

the matrix

A :=


X1 0 · · · 0

X2 X1
. . .

...
...

. . . . . . 0

Xl · · · X2 X1

 ∈ F(X1, . . . , Xl)
l×l.

Then A is superregular.

13



Proof: We proceed by contradiction. Assume there exists a singular proper submatrix

Â := Ai1,...,ir
j1,...,jr

.

We can take the size r to be minimal. Then certainly r > 1. By properness we know that

jν ≤ iν for ν = 1, . . . , r.

Notice that for µ ≤ ν the entry of A at the position (ν, µ) is given by Aν
µ = Xν−µ+1. Hence

the indeterminate with the largest index appearing in Â is Xir−j1+1. It appears only once in

the matrix and that is in the lower left corner. Thus its coefficient in det Â is ± det Ã, where

Ã := A
i1,...,ir−1

j2,...,jr
.

Singularity of A now implies det Ã = 0. By minimality of r this yields that Ã is an improper

submatrix of A, i. e. there exists an index τ ∈ {2, . . . , r} such that jτ > iτ−1. Picking τ

minimal we get i1 < . . . < iτ−1 < jτ < . . . < jr and therefore the first τ − 1 rows of Â have

the form ∗ · · · ∗ 0 · · · 0
...

...
...

...

∗ · · · ∗ 0 · · · 0

 ,

where the block of possibly nonzero elements consists of τ − 1 columns. Hence Â is a

blocktriangular matrix and we have

0 = det Â = det A
i1,...,iτ−1

j1,...,jτ−1
det Aiτ ,...,ir

jτ ,...,jr
.

Since both factors are proper minors we get a contradiction to the minimality of the size r.

The following consequence is standard.

Theorem 3.9 For every l ∈ N and every prime number p there exists a finite field F of

characteristic p and a superregular matrix T ∈ Fl×l having Toeplitz structure.

Proof: Consider the prime field Fp and the matrix of the previous lemma with entries in

Fp(X1, . . . , Xl). All its proper minors are nonzero polynomials in Fp[X1, . . . , Xl]. Over an

algebraic closure F̄p a point a := (a1, . . . , al) ∈ F̄l
p can be found such that none of the

minors vanishes at a. Hence the Toeplitz matrix T having (a1, . . . , al)
T as its first column is

superregular. Since each ai is algebraic over Fp, the matrix T has its entries in a finite field

extension F of Fp.

In particular, for every size l ∈ N there exist superregular Toeplitz matrices over a field

of characteristic 2. Unfortunately, the theorem above is non-constructive and it is not at all

clear what the minimum field of characteristic 2 is to allow a superregular Toeplitz matrix

of given size l × l. We present some examples.
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Example 3.10 (1) Using a computer algebra program one checks that the following matri-

ces are superregular. The first examples are all over prime fields Fp.

[
1 0

1 1

]
∈ F2×2

2 ,

1 0 0

1 1 0

2 1 1

 ∈ F3×3
3 ,


1 0 0 0

1 1 0 0

2 1 1 0

1 2 1 1

 ∈ F4×4
5 ,


1 0 0 0 0

2 1 0 0 0

1 2 1 0 0

6 1 2 1 0

4 6 1 2 1

 ∈ F5×5
7 ,



1 0 0 0 0 0

2 1 0 0 0 0

1 2 1 0 0 0

1 1 2 1 0 0

3 1 1 2 1 0

4 3 1 1 2 1

 ∈ F6×6
11 ,



1 0 0 0 0 0 0

7 1 0 0 0 0 0

13 7 1 0 0 0 0

2 13 7 1 0 0 0

1 2 13 7 1 0 0

4 1 2 13 7 1 0

14 4 1 2 13 7 1


∈ F7×7

17 .

The following examples represent superregular matrices over finite fields of characteris-

tic 2. For this assume that α, β and γ satisfy

α2 + α + 1 = 0, β3 + β + 1 = 0, and γ4 + γ + 1 = 0.

Then the following matrices are superregular over F4, F8 and F16 respectively.

1

α 1

1 α 1

 ∈ F3×3
22 ,


1

β 1

β3 β 1

β β3 β 1

1 β β3 β 1

 ∈ F5×5
23 ,



1

γ 1

γ5 γ 1

γ5 γ5 γ 1

γ γ5 γ5 γ 1

1 γ γ5 γ5 γ 1

 ∈ F6×6
24 .

Assume ε, ω satisfy

ε5 + ε2 + 1 = 0 and ω6 + ω + 1 = 0.

Then the following matrices are superregular over F32 and F64 respectively.



1

ε 1

ε6 ε 1

ε9 ε6 ε 1

ε6 ε9 ε6 ε 1

ε ε6 ε9 ε6 ε 1

1 ε ε6 ε9 ε6 ε 1


∈ F7×7

25 ,



1 0 0 0 0 0 0 0

ω 1 0 0 0 0 0 0

ω9 ω 1 0 0 0 0 0

ω33 ω9 ω 1 0 0 0 0

ω33 ω33 ω9 ω 1 0 0 0

ω9 ω33 ω33 ω9 ω 1 0 0

ω ω9 ω33 ω33 ω9 ω 1 0

1 ω ω9 ω33 ω33 ω9 ω 1


∈ F8×8

26 .
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Notice that the matrices above have even more symmetry than required. One can easily

show that there is no superregular 4 × 4-matrix over F4 of general Toeplitz structure.

However, the above suggests to ask whether one can find for every l ≥ 5 a superregular

l × l-Toeplitz matrix over F2l−2 .

(2) In Appendix B we prove that for every n ∈ N the proper minors of the Toeplitz-matrix

Tn :=


(

n−1
0

)(
n−1

1

) (
n−1

0

)
...

. . . . . .(
n−1
n−1

)
· · ·

(
n−1

1

) (
n−1

0

)

 ∈ Zn×n

are all positive. Hence for each n ∈ N there exists a smallest prime number pn such that

Tn is superregular over the prime field Fpn . One can check that

p2 = 2, p3 = 5, p4 = 7, p5 = 11, p6 = 23, p7 = 43.

Now we can establish the existence of strongly-MDS codes in the following sense.

Theorem 3.11 For every n, k, δ ∈ N such that n−k divides δ and for every prime number p

there exists a strongly-MDS code with parameters (n, k, δ) over a suitably large field of

characteristic p.

The proof of this theorem is rather long and technical and because of this reason it is put

into Appendix C.

Remark 3.12 It would be of course interesting to find good bounds on the size of the

field where an (n, k, δ) strongly-MDS code exists. Using the fact that an n × n matrix

whose entries have magnitude at most m can have a determinant of at most mnnn/2 it is

possible to bound the largest minor of the matrix Tn from Example 3.10(2) above. This in

turn provides then a very rough bound for a prime field where the existence of strongly-

MDS codes is guaranteed. In his upcoming dissertation R. Hutchinson will provide sharper

bounds for the smallest field size where the existence of strongly-MDS codes are guaranteed.

Unfortunately, examples show that these bounds are still far away from being optimal.

There is of course the natural question if strongly-MDS convolutional codes and codes

with maximum distance profile exist for all parameters (n, k, δ). The section showed that

such codes exist whenever n − k divides δ. In [34] it has been shown that codes with a

maximum distance profile exist for all parameters (n, k, δ) over sufficiently large fields. For

other small values of (n, k, δ) we have found strongly-MDS convolutional codes and codes

with maximum distance profile by making computer searches. In the next section we present

a series of examples of such codes. Based on this wealth of data we conjecture:

Conjecture 3.13 For all n > k > 0 and for all δ ≥ 0 there exists an (n, k, δ) code over a

sufficiently large field which is both strongly-MDS and has a maximum distance profile.
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IV. EXAMPLES

In this section we will present some examples of strongly-MDS codes with small parameters.

The first set of examples is constructed according to the proof of Theorem 3.11 by utilizing

the superregular matrices in Example 3.10.

Example 4.1 Recall the first part of the proof of Theorem 3.11.

(1) We can construct strongly-MDS (2, 1, δ) codes once a τ × τ superregular matrix, where

τ = 2δ + 1, is available. Thus, the 5 × 5 and 7 × 7 matrices given in Example 3.10(1)

lead to the strongly-MDS (2, 1, 2) code over F8 (where β3 + β + 1 = 0) with parity check

matrix

H = [a, b] = [1 + β2D + β5D2, 1 + β4D + β5D2] ∈ F8[D]2

and to the strongly-MDS (2, 1, 3) code over F32 (where ε5 + ε2 +1 = 0) with parity check

matrix

H = [a, b] = [1 + ε18D + ε11D2 + ε29D3, 1 + D + ε27D2 + ε18D3] ∈ F32[D]2.

Indeed, one checks that

1 + β4D + β5D2

1 + β2D + β5D2
= 1 + βD + β3D2 + βD3 + D4 + higher powers

and

1 + D + ε27D2 + ε18D3

1 + ε18D + ε11D2 + ε29D3
=1 +εD+ε6D2+ε9D3+ε6D4+εD5+D6 + higher powers.

Hence the free distance of the two codes above is 6 (resp. 8), and this is also the 4th

(resp. 6th) column distance.

(2) Using the 8 × 8-superregular matrix of Example 3.10(1), one can construct a strongly-

MDS (3, 2, 2) code over F64. Hence the code has free distance equal to its 3rd column

distance, and this value is 5. Using the construction of the proof of Theorem 3.11 and

going through some tedious calculations in the field F64 (where ω6 + ω + 1 = 0) one

finally arrives at the parity check matrix

H = [1 + ω57D + ω62D2, ω + ω44D + ω54D2, 1 + ω17D + ω21D2] ∈ F3
64.

(3) A strongly-MDS (4, 3, 1) code has free distance 3 and this is identical with the first column

distance. It can be obtained from a 6× 6-superregular matrix using the construction of

the proof of Theorem 3.11. Indeed, the matrix

Ĥ =

[
1 0 γ5 γ 1 0 0 0

0 1 1 γ γ5 γ5 γ 1

]
has been obtained from the superregular Toeplitz matrix of Example 3.10(1) and thus

it satisfies property (b) of Theorem 3.1. Hence a parity check matrix of a strongly-MDS

(4, 3, 1) code over F16 (where γ4 + γ + 1 = 0) is given by

H = [1, γ5 + D, γ + γD, 1 + γ5D] ∈ F16[D]4.
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(4) Of course, not every MDS code is strongly-MDS. For instance, the code with parity

check matrix H = [10 + 3D + 2D2, 4 + 2D + D2] ∈ F11[D]2 is an MDS code, but not

strongly-MDS. In this example, the MDS property follows from the fact, that this code is

the result of the construction of MDS codes as presented in [12]. However, a (2, 1, 1) code

is strongly-MDS if and only if it is an MDS code. This can be checked directly by using

Theorem 3.1 and the fact that for the (basic) parity check matrix [a0 + a1D, b0 + b1D]

of an MDS code all coefficients as well as a0b1 − a1b0 are nonzero.

The next series of examples has been found by completely different methods. They are

all cyclic convolutional codes in the sense of [13, 35, 14, 15]. In those papers convolutional

codes having some additional algebraic structure are being investigated. This additional

structure is a generalization of cyclicity of block codes but is a far more complex notion for

convolutional codes. In particular cyclicity of convolutional codes does not mean invariance

under the cyclic shift in F[D]n. We will not go into the details but rather refer to [13,

35]. However, in order to understand and test the following examples there is no need in

understanding the concept of cyclicity for convolutional codes since below we provide all

information needed to specify the codes. We present the generator matrices and also provide

all column distances; they have been computed with a computer algebra program. All

matrices given below are minimal basic. We would like to mention that just like for cyclic

block codes, the length of the code and the characteristic of the field have to be coprime.

Therefore, only codes with odd length are given below.

One should note that most of the following codes exist over comparatively smaller al-

phabets than the examples of 4.1. However, we don’t know any general construction for

strongly-MDS cyclic convolutional codes yet. But the abundance of (small) examples sug-

gests that such a construction might be possible and might lead to smaller alphabets for

given parameters than the construction of the last section. We will leave this as an open

question for future research.

Example 4.2 (1) A strongly-MDS (3, 1, 1) code over F4:

G = [α + αD, α2 + αD, 1 + αD].

The column distances are dc
0 = 3, dc

1 = 5, dc
j = 6 for j ≥ 2.

(2) A strongly-MDS (3, 1, 2) code over F16 (where β4 + β + 1 = 0):

G = [β + βD + D2, β6 + βD + β10D2, β11 + βD + β5D2].

The column distances are dc
0 = 3, dc

1 = 5, dc
2 = 7, dc

j = 9 for j ≥ 3.

(3) A strongly-MDS (3, 2, 2) code over F16:

G =

[
β5 + β4D β3 + β8D β9 + β2D

β9 + β12D β5 + β14D β3 + β3D

]
.

The column distances are dc
0 = 2, dc

1 = 3, dc
2 = 4, dc

j = 5 for j ≥ 3.
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(4) A strongly-MDS (5, 1, 1) code over F16:

G = [β + βD, β13 + β10D, β10 + β4D, β7 + β13D, β4 + β7D].

The column distances are dc
0 = 5, dc

1 = 9, dc
j = 10 for j ≥ 2.

(5) A strongly-MDS (5, 1, 2) code over F16:

G = [β + β4D + βD2, β7 + βD + β10D2, β13 + β13D + β4D2,

β4 + β10D + β13D2, β10 + β7D + β7D2].

The column distances are dc
0 = 5, dc

1 = 9, dc
2 = 13, dc

j = 15 for j ≥ 3.

(6) A strongly-MDS (5, 2, 2) code over F16:

G =

[
β + βD β13 + β10D β10 + β4D β7 + β13D β4 + β7D

1 + β5D β3 + β11D β6 + β2D β9 + β8D β12 + β14D

]
.

The column distances are dc
0 = 4, dc

1 = 7, dc
j = 9 for j ≥ 2.

(7) A strongly-MDS (7, 1, 1) code over F8 (where γ3 + γ + 1 = 0):

G = [γ + γD, γ3 + D, γ5 + γ6D, 1 + γ5D, γ2 + γ4D, γ4 + γ3D, γ6 + γ2D].

The column distances are dc
0 = 7, dc

1 = 13, dc
j = 14 for j ≥ 2.

(8) A strongly-MDS (7, 1, 2) code over F8:

G = [γ2 + γD + D2, γ5 + γ3D + γ6D2, γ + γ5D + γ5D2, γ4 + D + γ4D2,

1 + γ2D + γ3D2, γ3 + γ4D + γ2D2, γ6 + γ6D + γD2].

The column distances are dc
0 = 7, dc

1 = 13, dc
2 = 18, dc

j = 21 for j ≥ 3.

(9) It is worth being mentioned that there does not exist even an MDS (7, 2, 2) code over

F8, since the generalized Singleton bound in this case is 13, but due to the Griesmer

bound (see [1, p. 133] for the binary case) the parameters of an (n, k, δ) code over Fq

with memory m and distance d satisfy

k(m+i)−δ−1∑
l=0

⌈ d

ql

⌉
≤ n(m + i) for all i ∈ N0.

Hence a (7, 2, 2) code over F8 with memory 1 has at most distance 12. The inequality

applied to i = 1 shows that the field size has to be at least 13 in order to allow the

existence of an MDS (7, 2, 2) code.

One should notice that the codes in Example 4.2(1) – (7) are not only strongly-MDS but

also have all column distances being optimal in the sense that they reach the upper bound

given in Proposition 2.2. In particular they also have a maximum distance profile in the

sense of Definition 2.9. For the (7, 1, 2) code in (8), only the second column distance is not

optimal, but rather one less than the upper bound, which is 19 in this case. The implications

of this have been discussed already in Example 2.12(1).

19



V. THE DUAL OF A STRONGLY MDS-CODE

In this section we will present some results concerning the dual code of a strongly-MDS

code. The main result shows that a convolutional code has a maximum distance profile if

and only if its dual has this property. This then implies for certain parameters that a code

is strongly-MDS if and only if its dual has this property. These results are very appealing

as it generalizes the situation for block codes.

Recall that if

C = {uG | u ∈ F[D]k} = {v ∈ F[D]n | vHT = 0} ⊆ F[D]n

is an (n, k, δ) code with generator matrix G ∈ F[D]k×n and parity check matrix H ∈
F[D](n−k)×n, then the dual code, defined as

C⊥ = {w ∈ F[D]n | wvT = 0 for all v ∈ C},

is given by

C⊥ = {uH | u ∈ F[D]n−k} = {w ∈ F[D]n | wGT = 0}

and thus an (n, n − k, δ) code. In contrast to the block code situation almost nothing is

known about the relation between the distances of a code and its dual. In particular, it

has been shown in [36] that no MacWilliams identity relating the weight distributions of C
and C⊥ exists. In block code theory a very simple relation between the distances of a code

and its dual is given in the case of MDS codes. In fact, if C is an MDS (n, k) block-code,

then the dual C⊥ is an MDS (n, n− k) code, see [33, Ch. 11, §2] and very specific knowledge

on the weight enumerator and its dual is known [33, Ch. 11]. Therefore, it is quite natural

to investigate whether the dual of an MDS (or strongly-MDS) convolutional code is MDS

(or strongly-MDS), too. Unfortunately, this is in general not the case.

Example 5.1 In general the dual of a strongly-MDS code is not even an MDS code. This

can be seen from the dual of the code given in Example 4.1(3). The dual has generator

matrix G = [1, γ5 + D, γ + γD, 1 + γ5D] ∈ F16[D]4 which obviously has weight less than the

generalized Singleton bound 8 (see Theorem 2.6).

As we will show next the property of maximum distance profile carries over under du-

alization. In addition, for specific code parameters the strongly-MDS property carries over

to the dual code as well. To this end, recall from Definition 2.8 that an (n, k, δ) code is

strongly-MDS if the Mth column distance attains the generalized Singleton bound where

M = b δ
k
c + d δ

n−k
e. Thus the dual code C⊥ is MDS if the M̂th column distance attains the

generalized Singleton bound where M̂ = b δ
n−k

c + d δ
k
e. Obviously, these two numbers differ

by one when k divides δ but n− k does not or vice versa. What remains equal for both the

code and its dual is the quantity L =
⌊

δ
k

⌋
+

⌊
δ

n−k

⌋
used in Definition 2.9 where we introduced

the concept of maximum distance profile.

Theorem 2.4 provides us with the following nice duality result.
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Theorem 5.2 An (n, k, δ) code C ⊆ F[D]n has a maximum distance profile if and only if

the dual code C⊥ ⊆ F[D]n has this property.

Proof: Let C have generator matrix G and parity check matrix H as given in (2.1) and (2.2).

Assume C has a maximum distance profile. By Theorem 2.4 every (L+1)(n−k)×(L+1)(n−k)

full-size minor formed from the columns of Hc
L with indices 1 ≤ r1 < . . . < r(L+1)(n−k), where

rs(n−k) ≤ sn for s = 1, . . . , L, is nonzero.

Consider now the dual code C⊥ which is defined as the rowspace of the (n−k)×n matrix

H. It follows from (2.4) that the Lth column distance of the dual code C⊥ is given by

d̂c
L = min

{
wt

(
(uL, . . . , u0)H

c
L

) ∣∣ ui ∈ Fn−k, u0 6= 0
}
.

Taking the reversed ordering into account we obtain again from Theorem 2.4 that the dual

code C⊥ has maximum distance profile as well.

Corollary 5.3 When both k and n−k divide δ then an (n, k, δ) code C ⊆ F[D]n is strongly-

MDS if and only if C⊥ ⊆ F[D]n has this property.

Proof: From k | δ and (n − k) | δ it follows that L = M and dc
M = (n − k)

(
δ
k

+ 1
)

+ δ + 1,

the generalized Singleton bound of the code C and d̂c
M = k

(
δ

n−k
+ 1

)
+ δ + 1, the generalized

Singleton bound of the dual code C⊥.

The result above gives us another class of strongly-MDS codes by dualizing Theorem 3.11.

Corollary 5.4 For every n, δ ∈ N0 such that both k and n − k divide δ and every prime

number p there exists a strongly-MDS (n, k, δ) code over some suitably large field of charac-

teristic p.

Example 5.5 (a) Corollary 5.3 tells us that the duals of the (2, 1, δ) codes given in Exam-

ple 4.1(1) are strongly-MDS. But this is obviously so, since they are — up to ordering

— identical to the given codes.

(b) Dualizing the code of Example 4.1(2) gives us a strongly-MDS (3, 1, 2) code with gener-

ator matrix

G = [1 + ω57D + ω62D2, ω + ω44D + ω54D2, 1 + ω17D + ω21D2] ∈ F3
64.

(c) Dualizing the codes given in Example 4.2(2) and (3) we obtain another two strongly-MDS

codes with generator matrices

H1 =

[
1 βD + β9 β6D + β8

β14D β7D + β6 β8D + β

]
∈ F2×3

16

and

H2 = [D2 + D + β2, β10D2 + D + β7, β5D2 + D + β12] ∈ F3
16.

It is known that these codes are also cyclic convolutional codes in the sense of [13],

see [13, Thm. 7.5].
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Finally we would like to mention that even in the case where k | δ and (n − k) | δ, the

dual of an MDS code is not MDS in general. An example is given by the following code.

Example 5.6 The (3, 1, 2) code C ⊆ F[D]3, where F = F16, with generator matrix

G = [1 + βD + β4D2, β10 + β2D + β4D2, β8 + β5D + D2]

and parity check matrix

H =

[
1 β14D + β2 β3D + β3

βD β11D + β8 β10D + β10

]
is an MDS code, but not strongly-MDS. It satisfies dc

3 = 8 and dc
4 = 9. The dual code

generated by H is not MDS. Its distance is 4.

VI. ESTIMATES FOR THE EXTENDED ROW DISTANCES

In this section we will use the information about the column distances in order to present a

lower bound for the extended row distances of a strongly-MDS code with unit memory.

For this let G = G0 + G1z ∈ F[z]k×n be the generator matrix of a unit memory code of

degree k, thus G1 has full row rank, and let the code be strongly-MDS and have a maximum

distance profile. Hence dc
j = (n−k)(j +1)+1 for all j = 0, . . . ,M −1 where M := 1+d k

n−k
e

and we have dc
M = 2n− k + 1 = dfree(im G).

Denote by d̂r
j the jth extended row distances of the code, thus d̂r

j is the minimum weight

of all codewords v =
∑j−1

i=0 uiz
iG of degree j where ui 6= 0 for all i = 0, . . . , j − 1. Define

Ac
M =


G1

G0 G1

G0
. . .
. . . G1

G0

 ∈ F(M+1)k×Mn.

Lemma 6.1 Let u0 6= 0. Then wt
(
(u0, u1, . . . , uM)Ac

M

)
≥ n− k + 1.

Proof: Let (u0, u1, . . . , uM)Ac
M = (v1, . . . , vM). Then (u0, u1, . . . , uM)Gc

M = (v0, v1, . . . , vM)

for some v0 ∈ Fn. Since u0 6= 0 we have wt(v0, v1, . . . , vM) ≥ dc
M = 2n − k + 1. Estimating

the weight of v0 by n we obtain the desired result.

Theorem 6.2 Let j ≥ M and write j = aM + t where a ∈ N and 0 ≤ t < M . Then we

have

d̂r
j ≥

n− k + 1

M
j + (n− k)(M − 1) + max{0, t(n− k) + 1− n}.

Hence the extended row distances are bounded from below by a linear function with slope
n−k+1

M
.
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Note that the constant part of this linear function is always positive.

Proof: Write

Gr
j =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

G0 G1

G0
. . .
. . . G1

G0 G1

G0 G1

G0
. . .
. . . G1

G0 G1

. . .

G1

G0 G1

G0
. . .
. . . G1

G0 G1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

∈Fjk×(j+1)n.

︸ ︷︷ ︸
M blocks

︸ ︷︷ ︸
M blocks

. . . . . .︸ ︷︷ ︸
a times

︸ ︷︷ ︸
t blocks

︸︷︷︸
1 block

We have to estimate wt
(
(u0, . . . , uj)G

r
j

)
where all ui 6= 0. Thus we may use the lower bound

dc
M−1 = M(n−k)+1 for the first block, the lemma for the next a−1 blocks, max{0, dc

t−1−n}
and n− k + 1 for the last two blocks, respectively. Hence

dr
j ≥ M(n− k) + 1 + (a− 1)(n− k + 1) + max{0, t(n− k) + 1− n}+ n− k + 1

= (n− k)(M + a) + a + 1 + max{0, t(n− k) + 1− n}

= (n− k)

(
M +

⌊ j

M

⌋)
+

⌊ j

M

⌋
+1 + max{0, t(n− k) + 1− n}

≥ (n− k)(
j

M
+ M − 1) +

j

M
+ max{0, t(n− k) + 1− n}

=
n− k + 1

M
j + (n− k)(M − 1) + max{0, t(n− k) + 1− n}.

Remark 6.3 We computed the weight distribution for some of our codes (those with number

of states not bigger than 64), and in all cases we even obtain d̂r
j = (n− k)(j + 1) + 2. This

is in general a much better slope than the estimate of the theorem above.
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VII. CONCLUSION

In this paper we introduced two new classes of convolutional codes called strongly-MDS con-

volutional codes and codes having maximum distance profile. Strongly-MDS convolutional

codes have the property that the generalized Singleton bound is attained at the earliest

possible column distance. Codes with maximum distance profile have a maximal possible

increase of the column distances.

From an applications point of view strongly-MDS convolutional codes are particularly

suited in situations where codes over large alphabets are required and in situations where

algebraic decoding is desirable. Hadjicostis [21, 22] has recently demonstrated that convo-

lutional codes over large alphabets are very desirable in areas of process control via linear

finite state machines where large numbers of non-concurrent errors should be detected and

corrected. It seems that strongly-MDS convolutional codes have potential for such applica-

tions.

APPENDIX A

We will need the following lemma.

Lemma A.1 Let A ∈ Fk×n and B ∈ Fn×(n−k) such that

AB = 0 and rank A = k, rank B = n− k.

Then the following are equivalent:

(a) the k × k-submatrix of A consisting of the columns with indices 1 ≤ t1 < . . . < tk ≤ n

is singular,

(b) The (n − k) × (n − k)-submatrix of B obtained by taking the rows with indices in

{1, . . . , n}\{t1, . . . , tk} is singular.

Proof: Without loss of generality assume (t1, . . . , tk) = (1, . . . , k) and partition A = (A1 A2),

where A1 is the k × k submatrix under consideration. If A1 is invertible then

ker A = colspanF

(
A−1

1 A2

−In−k

)
= colspanF(B).

This shows that the bottom (n− k)× (n− k)-submatrix of B is invertible.

Proof of Theorem 2.4: (i) ⇒ (ii): Assume there are indices 1 ≤ t1 < . . . < t(j+1)k

satisfying tsk+1 > sn for s = 1, . . . , j whose corresponding minor is zero. It follows that there

is a vector u = (u0, . . . , uj) such that uGc
j has zero coordinates at positions t1, . . . , t(j+1)k.

Let ` := min{i | ui 6= 0}. Consider the vector

(u`, . . . , uj) Gc
j−` ∈ F(j−`+1)n.
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The weight of this vector is at most (j − ` + 1)(n− k) as there are at least (j − ` + 1)k zero

coordinates. From (2.4) it follows that dc
j−` ≤ (j − ` + 1)(n − k) and by Corollary 2.3 we

also have dc
j ≤ (j + 1)(n− k), contradicting (i).

(ii) ⇒ (i): Assume that dc
j ≤ (n − k)(j + 1). Let m := min{i | dc

i ≤ (n − k)(i + 1)}. It

follows that there is a vector u = (u0, . . . , um), u0 6= 0 such that uGc
m has at least k(m + 1)

zeros. As a submatrix inside Gc
j we select the columns corresponding to the first k(m + 1)

positions where uGc
m has a zero and we augment it by the last k(j − m) columns of Gc

j.

We call the indices of the selected columns t1, . . . , t(j+1)k. This gives a (j + 1)k × (j + 1)k

full-size minor and we claim that this minor is zero and that the indices t1, . . . , t(j+1)k satisfy

tsk+1 > sn for s = 1, . . . , j. In order to prove the latter note that dc
i = (n − k)(i + 1) + 1

for i = 0, . . . ,m − 1. It therefore follows that (u0, . . . , ui)G
c
i has at most k(i + 1) − 1 zeros

for i = 0, . . . ,m − 1. In particular tsk+1 > sn for s = 1, . . . ,m. Clearly it is also true for

s = m + 1, . . . , j. It remains to be shown that the minor is zero. For this note that the

selected matrix has the form

[
A B

0 C

]
where A is an (m + 1)k× (m + 1)k submatrix of Gc

m

which is singular by construction. The full size minor is therefore zero.

As for the equivalence of (ii) and (iii) recall that Gc
j(H

c
j )

T = 0 and that both matrices

have full rank. The minor in Hc
j complementary to the minor of Gc

j with the indices as in (ii)

has indices as given in (iii). Therefore, Lemma A.1 completes the proof. 2

Proof of Corollary 2.5: In this special case where G is systematic, the truncated sliding

generator matrix has the form

Gc
j =


I P0 0 P1 · · · · · · 0 Pj−1 0 Pj

I P0 0 Pj−2 0 Pj−1

. . . . . .
...

...
...

...

I P0 0 P1

I P0


First of all, using Theorem 2.4(ii) it is easy to see that both conditions in the corollary imply

that the matrices Pi do not contain any zero entries. Therefore we may assume that all

entries of P0, . . . , Pj are nonzero. Secondly, notice that the (j +1)k×(j +1)k submatrices M

of Gc
j are in one-one relation to the square submatrices M̂ of P̂ . Precisely, let M be obtained

from Gc
j by picking, say, ai columns from the block columns containing the identity matrix

and, say, bi columns from the block column starting with Pi. Then

j∑
i=0

(ai + bi) = (j + 1)k (A.1)

and M satisfies the index condition in Theorem 2.4(ii) if and only if

t∑
i=0

(ai + bi) ≤ (t + 1)k for all t = 0, . . . , j. (A.2)
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The submatrix M contains a b̂× b̂-submatrix M̂ of P̂ , where b̂ :=
∑j

i=0 bi, and obviously, the

matrix M is nonsingular if and only if M̂ is. Therefore, it remains to prove that M satisfies

the index condition in Theorem 2.4(ii) if and only if M̂ does not contain an s× t-zero block

where s + t ≥ b̂ + 1. Since all entries of the matrices Pi are nonzero, the largest zero blocks

contained in the submatrix M̂ are of sizes
(
(j− t + 1)k−

∑j
i=t ai

)
×

∑t−1
i=0 bi for t = 1, . . . , j.

Using (A.1) it is easy to see that

(j − t + 1)k −
j∑

i=t

ai +
t−1∑
i=0

bi ≤ b̂ ⇐⇒
t−1∑
i=0

(ai + bi) ≤ tk.

But this is just the condition in (A.2) and, by virtue of Theorem 2.4, that proves the

equivalence of (i) and (ii). 2

APPENDIX B

We will prove that the proper minors of the matrix Tn given in Example 3.10(2) are all

positive. In order to do so consider the matrix

X =



1

1 1

1 1
. . . . . .

1 1

1 1


∈ Zn×n

and notice that for all k ∈ {1, . . . , n− 1} we have

Xk =



1(
k
1

)
1(

k
2

) (
k
1

)
1

...
. . . . . . . . .

...
. . . . . . . . .

1 . . . . . .
(

k
2

) (
k
1

)
1

1 . . . . . .
(

k
2

) (
k
1

)
1

. . . . . . . . . . . .

1 . . . . . .
(

k
2

) (
k
1

)
1


. (B.1)

In particular, Xn−1 = Tn. Therefore, the positivity of the proper minors is a consequence of

the following theorem.

Theorem B.1 Let k ∈ {1, . . . , n− 1} and 1 ≤ i1 < . . . < ir ≤ n, 1 ≤ j1 < . . . < jr ≤ n and

define X̂ := (Xk)i1,...,ir
j1,...,jr

. Then det X̂ ≥ 0 and

det X̂ > 0 ⇐⇒ jl ∈ {il, il − 1, . . . , il − k} for all l = 1, . . . , r.
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Proof: 1) We first show that

jl 6∈ {il, il − 1, . . . , il − k} for some l =⇒ det X̂ = 0. (B.2)

To this end notice that

Xij = 0 for j > i or j < i− k

and thus

X̂ef = Xiejf
= 0 for jf > ie or jf < ie − k.

Assume now jl > il for some l. Then for all e ≤ l and f ≥ l we have jf ≥ jl > il ≥ ie and

thus X̂ef = 0. Hence the first l rows of X̂ have at most rank l − 1 and thus det X̂ = 0.

Similarly, if jl < il − k for some l, then we have X̂ef = 0 for all e ≥ l and f ≤ l and the

first l columns of X̂ have at most rank l − 1.

2) It remains to prove the implication “⇐=” of the equivalence given in the theorem.

We begin with proving the statement for k = 1, i. e. for the matrix X. In order to do so, we

proceed by induction on r. For r = 1 we have to consider the submatrices X i1
i1

and X i1
i1−1.

They all trivially have determinant 1. Now let r > 1. We suppose the statement is true for

all (r− 1)× (r− 1) proper submatrices with the according restriction on the indices and we

have to show that the assertion is also true for X̂ = X i1,...,ir
j1,...,jr

where jl ∈ {il, il − 1} for all l.

Notice that the first column of X̂ has either one or two nonzero entries and they are equal

to 1. If the first column of X̂ has one 1 only, then it is on the first row. Applying cofactor

expansion along that column we obtain

det X̂ = 1 · det X i2,...,ir
j2,...,jr

. (B.3)

The (r − 1) × (r − 1)-submatrix satisfies jl ∈ {il, il − 1} for all l = 2, . . . , r and hence by

induction has positive determinant. This proves det X̂ > 0 in this case. If the first column

of X i1,...,ir
j1,...,jr

has two entries equal to 1, then they are necessarily on the first two rows, thus

i2 = i1 + 1 and j1 = i1. Since j2 ∈ {i2, i2 − 1} = {i1 + 1, i1} and j2 > j1, we can only

have j2 = i1 + 1. Then the first row will have only one nonzero entry equal to 1 on the first

position, and applying cofactor expansion along that row, we obtain again (B.3) and thus

det X̂ > 0.

We now proceed by induction on k in order to prove the desired result for Xk where k > 1.

Assume Xk−1 has the stated property. Using Xk = X ·Xk−1 and the Cauchy-Binet formula

for minors we obtain

det X̂ =
∑

1≤s1<...<sr≤n,
sl∈{il,il−1}∩{jl,jl+1,...,jl+k−1}

det X i1,...,ir
s1,...,sr

· det(Xk−1)s1,...,sr

j1,...,jr
.

Due to part 1) of the proof the sum indeed expands only over the given indices. By induction

all nonsingular submatrices of both matrices X and Xk−1 have positive determinant, hence

if there are any nonzero terms in the sum, it is necessarily positive. Therefore, the only

thing left to be proven is that there is a nonzero term in the above sum. But all products of

the form det X i1,...,ir
i1,...,ir

· det(Xk−1)i1,...,ir
j1,...,jr

with jl ∈ {il, il − 1, il − 2, . . . , il − (k− 1)} for all l are

nonzero. Thus det X̂ > 0 and the proof is complete.
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APPENDIX C

Proof of Theorem 3.11: Step 1: We will show the existence of a matrix P̂ as in (3.3) satisfying

part (c) of Theorem 3.1. This can be accomplished as follows. Define τ = (M + 1)(n − 1)

and pick a superregular Toeplitz matrix

T =


t0 0 · · · 0

t1 t0
. . .

...
...

. . . . . . 0

tτ−1 · · · t1 t0

 ∈ Fτ×τ .

Theorem 3.9 guarantees the existence of such a matrix over a suitably large field of charac-

teristic p. For l = 0, . . . ,M define the matrices

Pl = T
l(n−1)+k,l(n−1)+k+1,...,(l+1)(n−1)
1,...,k ∈ F(n−k)×k.

Then, due to the Toeplitz structure of T , we have for all r = 0, . . . ,M

Pl = T
(l+r)(n−1)+k,...,(l+r+1)(n−1)
r(n−1)+1,...,r(n−1)+k for l = 0, . . . ,M − r

and therefore the matrix P̂ in (3.3) is obtained from T by picking the rows with indices

k, k + 1, . . . , n− 1, n− 1 + k, . . . , 2(n− 1), . . . ,M(n− 1) + k, . . . , (M + 1)(n− 1)

and the columns with indices

1, . . . , k, n, . . . , n− 1 + k, 2(n− 1) + 1, . . . , 2(n− 1) + k, . . . ,M(n− 1) + 1, . . . ,M(n− 1) + k.

But then it is obvious that the matrix P̂ inherits from T the property that all j × j-

submatrices not containing an s × r-zero block where s + r ≥ j + 1 are nonsingular, cf.

Remark 3.7. This provides us with a matrix Ĥ as in (3.3) satisfying the equivalent condi-

tions of Theorem 3.1.

Step 2: We now establish the existence of a polynomial matrix H ∈ F[D](n−k)×n having Ĥ

in (3.3) as Mth systematic sliding parity check matrix. For this define m := δ
n−k

and start

with H as in (3.1). Without loss of generality we may assume A0 = In−k. Then (3.2) tells

us that we need matrices A and B satisfying

B = A
( M∑

i=0

PiD
i + higher terms

)
. (C.1)

Comparing the coefficients of Dm+1, . . . , DM we obtain the matrix equation

[
Am . . . A1

]


PM−m . . . P1

PM−m+1 . . . P2
...

...

PM−1 . . . Pm

 = −
[
PM . . . Pm+1

]
. (C.2)
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Denote the matrix occurring on the left hand side by P . In order to see that the matrix equa-

tion is solvable we will show that P has full column rank. Notice that P ∈ Fm(n−k)×(M−m)k.

Using M = b δ
k
c + δ

n−k
and m = δ

n−k
one can easily see that (M − m)k ≤ m(n − k). But

then the full column rank of P follows from (c) of Theorem 3.1. Thus we can find matrices

A1, . . . , Am satisfying (C.2). Comparing now the powers of D0, . . . , Dm in (C.1) we obtain

B0, . . . , Bm. Then the equation is fully satisfied by setting PM+1, PM+2, . . . suitably.

Step 3: It remains to see that the code C := {v ∈ F[D]n | vHT = 0} has degree δ. But

this follows directly from the construction. Indeed, recall that M = b δ
k
c + δ

n−k
. Therefore,

using Theorem 3.1(a), we know that the Mth column distance of C satisfies

dc
M = (n− k)(M + 1) + 1 = (n− k)

(⌊ δ

k

⌋
+ 1

)
+ δ + 1.

Now the generalized Singleton bound in Theorem 2.6 shows that the code C cannot have a

degree smaller than δ. Thus C is a strongly-MDS (n, k, δ) code, n − k | δ and the proof is

complete. 2
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[16] J.A. Dominguez Perez, J.M. Muñoz Porras, and G. Serrano Sotelo. “Convolutional

codes of Goppa type,” Appl. Algebra Engrg. Comm. Comput., vol. 15, pp. 51–61, 2004.

[17] D. J. Costello Jr. “A construction technique for random-error-correcting convolutional

codes,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 631–636, Sept. 1969.

[18] C. Thommesen and J. Justesen. “Bounds on distances and error exponents of unit

memory codes,” IEEE Trans. Inform. Theory, vol. IT-29, pp. 637–649, Sept. 1983.

[19] J. Justesen, E. Paaske, and M. Ballan. “Quasi-cyclic unit memory convolutional codes,”

IEEE Trans. Inform. Theory, vol. IT-36, pp. 540–547, May 1990.

[20] J. E. Porath and T. Aulin. “Algorithmic construction of trellis codes,” IEEE Trans.

Commun., vol. COM-41, pp. 649–654, May 1993. See also Corrections in IEEE Trans.

Commun., vol. COM-43, pp. 1220, Feb./Mar./Apr. 1995.

[21] C. N. Hadjicostis. “Nonconcurrent error detection and correction in fault-tolerant

discrete-time LTI dynamic systems,” IEEE Trans. Circuits Systs I, vol. CAS1-50, pp.

45–55, Jan. 2003.

30



[22] C. N. Hadjicostis. “Finite-state machine embeddings for nonconcurrent error detection

and identification encoded dynamics for fault tolerance in linear finite-state machines,”

IEEE Trans. Automat. Contr., vol. AC-50, pp. 142–153, Feb. 2005.

[23] C. N. Hadjicostis and G. C. Verghese. “Encoded dynamics for fault tolerance in linear

finite-state machines,” IEEE Trans. Automat. Contr., vol. AC-47, pp. 189–192, Jan.

2002.

[24] J. Rosenthal. “Connections between linear systems and convolutional codes,” In Codes,

Systems and Graphical Models, IMA vol. 123, B. Marcus and J. Rosenthal, Eds. New

York, NY: Springer, 2001, pp. 39–66.

[25] J. Rosenthal, J. M. Schumacher, and E. V. York. “On behaviors and convolutional

codes,” IEEE Trans. Inform. Theory, vol. IT-42, pp. 1881–1891, Sept. 1996.

[26] R. J. McEliece. “The algebraic theory of convolutional codes,” In Handbook of Coding

Theory, vol. 1, V. Pless and W.C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier

Science, 1998, pp. 1065–1138.

[27] E. M. Gabidulin. “Convolutional codes over large alphabets,” In Proceedings of the

International Workshop on Algebraic Combinatorial and Coding Theory, Varna, 1988,

pp. 80–84.

[28] E. M. Gabidulin and D. K. Zigangirov. “Further results on convolutional codes over

large alphabets,” In Proceedings of the IEEE International Workshop on Information

Theory, Moscow, 1994, pp. 39–40.

[29] B.M. Allen. “Linear Systems Analysis and Decoding of Convolutional Codes,” PhD

Thesis, University of Notre Dame, Aug. 1999.

[30] R. M. Roth and A. Lempel. “On MDS codes via Cauchy matrices,” IEEE Trans.

Inform. Theory, vol. IT-35, pp. 1314–1319, Nov. 1989.

[31] R. M. Roth and G. Seroussi. “On generator matrices of MDS codes,” IEEE Trans.

Inform. Theory, vol. IT-31, pp. 826–831, Nov. 1985.

[32] A. K. Aydinian. “On matrices with non-degenerate square submatrices,” Problems of

Transmission of Information, vol. 22, pp. 104–108, 1986.

[33] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. Ams-

terdam, The Netherlands: North Holland, 1977.

[34] R. Hutchinson, J. Rosenthal, and R. Smarandache. “Convolutional codes with maximum

distance profile,” Systems & Control Letters, vol. 54, pp. 53–63, 2005.

31



[35] H. Gluesing-Luerssen, W. Schmale, and M. Striha. “Some small cyclic convolutional

codes,” In Proceedings of the 15-th International Symposium on the Mathematical The-

ory of Networks and Systems, cd-rom, D. Gilliam and J. Rosenthal, Eds. University of

Notre Dame, August 2002.

[36] J. B. Shearer and R. J. McEliece. “There is no MacWilliams identity for convolutional

codes,” IEEE Trans. Inform. Theory, vol. IT-23, pp. 775–776, Nov. 1977.

Heide Gluesing-Luerssen graduated from the University of Oldenburg (Germany) in

1986. In 1991 she received the Ph.D. degree from the University of Bremen (Germany)

and in 2000 the habilitation degree from the University of Oldenburg. All degrees are

in Mathematics. She was a Postdoctoral fellow at the Mathematics Department of the

University of Bremen from 1991 to 1993. In 1993 she joined the University of Oldenburg

where she has been serving as faculty member in the Mathematics Department until 2004.

Since then she is employed by the Department of Mathematics of the University of Groningen

(The Netherlands) as a faculty member. She held visiting positions at the University of Notre

Dame (Ind./USA) in 1997–1999, at the University of Magdeburg (Germany) in 2002, and at

the University of Kentucky (Ky./USA) in the academic year 2003/2004.

Currently she serves as Associate Editor of SIAM Journal on Control and Optimization.

Her research interest is focused on the mathematical theory of convolutional codes as well

as on algebraic systems theory.

Joachim Rosenthal is Professor of Applied Mathematics in the Department of Math-

ematics at the University of Zurich. He was born in Basel, Switzerland on September 19,

1961. He received the Diplom in Mathematics from the University of Basel in 1986 and the

Ph.D. in Mathematics from Arizona State University in 1990. From 1990 until 2006 he has

been with the Department of Mathematics at the University of Notre Dame, where he has

been last the Notre Dame Professor in Applied Mathematics and Concurrent Professor of

Electrical Engineering. In the academic year 1994/1995 he spent a sabbatical year at CWI,

the Center for Mathematics and Computer Science in Amsterdam, The Netherlands. During

the academic year 1999/2000 he was a Guest Professor at the Swiss Federal Institute of Tech-

nology in Lausanne, Switzerland, affiliated with the School of Computer & Communication

Sciences.

His current research interests are in coding theory and cryptography. In coding theory he

is interested in convolutional codes, LDPC codes and more general codes on graphs. In

cryptography his main interest lies in the construction of new oneway trapdoor functions.

He currently serves as Corresponding Editor of SIAM Journal on Control and Optimization

and as Associate Editor of Mathematics of Control, Signals, and Systems (MCSS), Journal

of Algebra and Its Applications (JAA) and Linear Algebra and its Applications. He has

been past Associate Editor for SIAM Journal on Control and Optimization, Systems and

Control Letters and Journal of Mathematical Systems, Estimation, and Control. In August

2002 he served as the Symposium Chair of the International Symposium on Mathematical

Theory of Networks and Systems (MTNS).

32



Roxana Smarandache is an assistant professor in the Department of Mathematics

and Statistics at San Diego State University. Originally from Bucharest, Romania, she

has completed her undergraduate studies in Mathematics at the University of Bucharest in

1996, with a B.S. thesis on Number Theory. From 1996-2001 she pursued a Ph.D. degree in

Mathematics at the University of Notre Dame, which she completed in July 2001. Her thesis

is in Coding Theory, with the subject of algebraic convolutional codes. After her Ph.D. she

joined San Diego State University.

During the academic year 1999-2000, Dr. Smarandache was for six months a visiting scholar

at the Swiss Federal Institute of Technology,(EPFL), Switzerland, in the Department of

Communication Systems. During the academic year 2005-2006, she was on leave at the

University of Notre Dame, on a visiting assistant professor position in the Department of

Mathematics.

Dr. Smarandache’s research topics are mainly related to coding theory. Her recent interests

include low density parity check codes, iterative and linear programming decoding, and

convolutional codes.

33


