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Abstract: This paper presents a survey on the recent contributions to linear time-invariant delay-
differential systems in the behavioral approach. In this survey both systems with commensurate and
with incommensurate delays will be considered. The emphasis lies on the investigation of the relationship
between various systems descriptions. While this can be understood in a completely algebraic setting
for systems with commensurate delays, this is not the case for systems with incommensurate delays.
In the study of this class of systems functional analitic methods need to be introduced and general
convolutional equations have to be incorporated. Whenever it is possible, the results will be linked to
the relevant control theoretic notions.
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1 Introduction

Delay systems is a classical topic in the control literature due to the well-known fact that the presence
of delays makes the controller synthesis more difficult. In recent years, the theory of delay systems
has attracted new attention. This is mainly caused by the fact that the low cost of data transmission
makes centralized control strategies more convenient. Indeed, in many practical situations it is now
possible to control many remotely positioned coupled plants by means of a unique controller. The use of
communication lines usually causes the presence of not negligible delays in the system.

Since delay systems are infinite-dimensional systems, they are usually treated with functional analytic
methods, in particular by use of the theory of semigroups. These methods are well-suited for the qualita-
tive analysis of a system, in particular for stability considerations. This analytical theory, however, will
not be the topic of this paper and we refer the reader to the vast literature.

In this survey we want to present the state-of-the-art of the behavioral approach to linear time-invariant
delay–differential systems. This approach is well-suited for the investigation of general structural control
theoretic properties like controllability, input/output–structures, causality etc. For the class of linear
time-invariant continuous-time systems described by ordinary differential equations (in the sequel simply
called purely differential systems) the behavioral approach has been worked out in great detail and
proved very successful, see [31]. For linear time-invariant multidimensional systems the behavioral theory
is developing thanks to the fundamental paper [28]. According to the behavioral approach, a system is
defined as a triple Σ = (T, W,B), where T is the time set, W is the alphabet where the signals take on
their values, and B is a subset of the space of all signals W := WT , which specifies what signals can occur
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in the given system. This subset is called the behavior of the system; it is the core of the description,
since it defines the dynamics by fixing what signals are allowed and what signals are forbidden. In a
continuous-time linear time-invariant system we have T = R, W = Rq, and B is a linear subspace of the
signal space W , which is invariant with respect to the forward shift operator. From a conceptual point of
view, the difference between the classical approach and the behavioral approach to systems theory is that
in the latter one a system is purely defined as the set of its possible trajectories, and not as an operator.
However, in order to launch a mathematical control theory, one assumes that the behavior is actually
given as the solution space of a system of equations. Hence we have an operator R : W → V , with some
space V , such that

B = kerR = {w ∈ W|R(w) = 0}.
The describing operator R is called a kernel representation of B. In the behavioral theory the control
theoretic properties of a system are defined purely in terms its trajectories, that is via the set B. Naturally,
the mathematical theory aims at characterizing these properties in terms of kernel representations. At this
point it becomes obvious that it is mandatory for the behavioral approach to understand the relationship
between operators R and behaviors B. Precisely, which operators give rise to the same behavior? In
addition to kernel representations, one might have (or want) a description of the system as, say, the
image of an operator R : V → W

B = im R = {w ∈ W | ∃ v ∈ V : w = R(v)}.

This is called image representation and its existence is connected with the controllability of the system.
Another representation which is a generalization of both the previous ones is the following

B = R−1
1 (im R2) = {w ∈ W | ∃ v ∈ V : R1(w) = R2(v)}

where R1 : W → U and R2 : V → U are two given operators. Such a description is called a latent
variable representation; it does not only involve the so-called manifest variable w of the system (whose
trajectories make up the behavior), but also a so-called latent variable v, which is just an auxiliary part
of the systems description and whose evolution itself is not relevant for the behavior. Such auxiliary
variables might arise directly in the modeling of the system; more importantly, they appear when two
systems are interconnected, say in a feedback–loop or in a series interconnection. An important issue
in the behavioral approach is the so-called latent variable elimination, which concerns the possibility of
obtaining a kernel representation from a latent variable representation. The importance of latent variable
representations and of latent variable elimination is widely discussed in [31].

In the behavioral approach to delay–differential systems all the operators arising above are delay–
differential operators acting on suitable function spaces. In this survey we shall mainly address the
“preliminary” questions raised above: uniqueness of kernel representations, existence of image represen-
tations, and latent variable elimination. At the moment the relationship between the various systems
descriptions is not completely understood for delay–differential systems. Only partial results are avail-
able. Whenever possible, we will also link the systems descriptions to the corresponding control theoretic
concepts. As it will turn out, a particular class of delay systems deserves special attention, that is the
case where the delays are commensurate. In this case the set of associated operators turns out to carry a
nice algebraic structure showing completely how to pass from one systems description to another. How
this can be used for the investigation of control theoretic questions will be illustrated by addressing the
issue of interconnecting systems.

2 Mathematical Preliminaries

In this section we shall provide some mathematical notations and preliminary results which will be used
in the sequel. For the purpose of this survey, it suffices to restrict to behaviors with signals which are
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smooth functions, i.e. contained in E := C∞(R, C). Notice that, as mentioned in the introduction, we
consider behaviors defined over the full time axis R. An algebraic theory for systems defined on R+ is yet
unknown and seems unlike harder. With some additional work it is also possible to extend the theory to
be presented here to certain larger function spaces (see [Sec. 7][35]).

Several operator algebras on E will play an important role in the behavioral theory of delay systems.
We shall introduce these various algebras by starting from the smallest one, that is the one which is
most closely related to the type of delay systems under investigation. It turns out that this algebra is
not rich enough for an algebraic theory; motivated by some simple considerations, we shall show how a
certain larger algebra naturally arises in this context. This is contained in the algebra of compact support
distributions; the latter one will also be helpful for the behavioral theory of systems with delays.

Let the space E be equipped with the topology of uniform convergence in all derivatives on all compact
sets; this turns E into a Fréchet space. We shall see later on that topological arguments will play a role
only for the case of systems with incommensurate delays. For the commensurate case algebraic arguments
will suffice, so that in that case E can simply be regarded as a module over the ring of delay–differential
operators to be introduced next. Let us begin by introducing the shift–operators σt0 , t0 ∈ R, defined as

(σt0f)(t) = f(t − t0)

for any function f ∈ E . The real number t0 is also called the delay. Notice that the operator σt0 can be
defined also over the vector valued fuctions in Eq and that it induces a linear bijective map. Then the
delay–differential operators under consideration are of the form

E −→ E , f �−→
N∑

i=0

M∑
j=1

pijf
(i)(· − tj) =

N∑
i=0

M∑
j=1

pijσtj f
(i), (2.1)

where pij ∈ R are constant coefficients, N, M ∈ N, and tj ≥ 0 are the delays.

It is standard to rewrite the operator given in (2.1) as follows. Consider the free Z–module t1Z + . . . +
tMZ ⊆ R and let {τ1, . . . , τk} ⊆ R+ be a basis of this module. For each ν = (ν1, . . . , νk) ∈ Zk the
composition σν := σν1

τ1
◦ . . . ◦ σνk

τk
describes the delay operator

(σνf)(t) =
(
σν1

τ1
◦ . . . ◦ σνk

τk
f
)
(t) = f(t −

k∑
j=1

νjτj), t ∈ R.

Together with the ordinary differential operator D = d
dt , these delays form the operator algebra

R := R[D, σ, σ−1] := R[D, στ1 , . . . , στk
, σ−1

τ1
, . . . , σ−1

τk
].

Notice that R is a commutative subring of EndC(E), the ring of all endomorphisms on E , and therefore
E is an R–module. Furthermore, the linear independence of τ1, . . . , τk over Z implies that R[D, σ] :=
R[D, στ1 , . . . , στk

] is a polynomial ring in k + 1 algebraically independent operators. By construction,
each operator of the type (2.1) corresponds to an element a(D, σ) ∈ R and can be written as

a(D, σ)f :=
N∑

i=0

∑
ν∈Zk

finite

aiνDiσνf, (2.2)

where aiν ∈ R are constant coefficients. In the case k = 1, we call these operators delay–differential
operators with commensurate delays; otherwise we say that the delay–differential operator contains in-
commensurate delays. The following result of Ehrenpreis will be crucial for the algebraic setting.

Proposition 2.1 ([9, pag. 697]) Each nonzero operator a(D, σ) ∈ R is surjective on E .
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As we shall see in the sequel, even though the operator algebra R is general enough to define delay
systems in the behavioral approach, it does not suffice to develop an algebraic theory. Therefore we
need to introduce a larger algebra. In order to do so, we associate with each delay–differential operator
a(D, σ) ∈ R its characteristic function, that is, we consider the mapping

a(D, σ) �−→ a(s, e−τ1s, . . . , e−τks) =: a∗(s), (2.3)

where s is a complex variable. This yields an isomorphism of rings

R ∼= R∗ := R[s, e−τ1s, . . . , e−τks, eτ1s, . . . , eτks].

Hence R∗ is a ring of transcendence degree k + 1 contained in H(C), the ring of entire functions. The
importance of the characteristic function a∗ ∈ H(C) rests on its capability to detect the exponential
monomials in the solution space

ker a(D, σ) := {f ∈ E | a(D, σ)f = 0}.

Indeed, for each λ ∈ C and k ∈ N0 we have

tkeλt ∈ ker a(D, σ) ⇐⇒ a∗(s)
(s − λ)k+1

∈ H(C), (2.4)

where the right hand side simply says that λ is a zero of a∗ of multiplicity at least k + 1. The equiva-
lence (2.4) immediately implies

ker b(D, σ) ⊆ ker a(D, σ) =⇒ a∗

b∗
∈ H(C) (2.5)

for each a, b ∈ R. In fact, the converse is true as well and can be deduced from spectral synthesis (see
[33, Thm. 5]), but will also follow from our considerations (see Theorem 2.2(b) below).

Consider now the set

H :=
{a

b

∣∣∣ a, b ∈ R, b �= 0,
a∗

b∗
∈ H(C)

}
, (2.6)

which is a subring of the abstract quotient field R(D, σ) of the polynomial ring R[D, σ]. Using a result
from harmonic analysis, one deduces that H is an operator algebra contained in EndC(E) and containing
R. We summarize these facts in

Theorem 2.2 The ring H can be described as follows.

(a) H =
{

a
φ

∣∣∣ a ∈ R, φ ∈ R[D]\{0}, a∗
φ∗ ∈ H(C)

}
.

(b) H =
{

a
b ∈ R(D, σ)

∣∣∣ a, b ∈ R, ker b(D, σ) ⊆ ker a(D, σ)
}

.

(c) Let a, b ∈ R, b �= 0, and ab−1 ∈ H. Then the mapping

E −→ E , f �−→ a(D, σ)g, where b(D, σ)g = f

is well-defined, C-linear, and depends only on the quotient ab−1 (and not on its specific fractional

representation via a and b). Denoting this map simply by a
b : E → E , the ring H becomes a

commutative subring of EndC(E). This turns E into an H–module. We call the operators ab−1 ∈ H
delay–differential operators, too.

Part (a) is a result about exponential polynomials in harmonic analysis and has been proven in [2]. A
slightly simpler proof can be found in [14, Thm. 5.8]. Part (b) can be deduced from (a) by some algebraic
arguments along with the obvious fact that a∗(φ∗)−1 ∈ H(C) iff kerφ(D) ⊆ ker a(D, σ) whenever φ ∈
R[D] and a ∈ R; see also [14]. Part (c) is a simple consequence of (b) and follows by standard calculations;
see [12, Rem. 2.8] or [14, Sec. 3]. Notice that the function g does always exist thanks to Proposition 2.1.
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The operator algebra H has been introduced first for the commensurate case in [12], where it also has
been thoroughly studied with respect to its algebraic properties. In completely different shapes and for
different purposes it has also appeared in earlier work in [29] and [19]. For the incommensurate case the
algebra H has been considered first in [26, 14] as well as in [38].

The topological arguments needed for the incommensurate case will make it necessary to take also the full
algebra of convolution operators defined on E into consideration. Let D′ be the vector–space of complex-
valued distributions on the space D := {f ∈ E | supp f is compact}, endowed with the usual inductive
limit topology. Here supp denotes the support of a function or distribution. Furthermore, let D′

c := {T ∈
D′ | supp T compact}. We shall identify the distributions in D′

c with E ′, that is, with their extension
to distributions on E ; see [34, Thm. 24.2]. Recall that each distribution T ∈ E ′ induces a convolution
operator f �→ T ∗f and thus a continuous map E → E . In particular, E ′ is (up to isomorphism) contained
in EndC(E). Finally, denote by δ

(k)
a the k-th derivative of the Dirac–distribution at a ∈ R [41, pag. 124–

129]. In this setting, differentiation (resp. forward–shift by τj time units) corresponds to convolution with
δ
(1)
0 (resp. δτj). Precisely, for a(D, σ) ∈ R and f ∈ E we have a(D, σ)f = a(δ(1)

0 , δτ1 , . . . , δτk
) ∗ f ∈ E .

Hence R is (up to isomorphism) a subring of the domain E ′. This observation has already been made in
[18], where it was utilized for a transfer function approach to delay–differential systems.

According to a Paley–Wiener Theorem (see [3, pag. 27–28]), one can embed E ′ into H(C). Indeed, the
Laplace transform L : E ′ → H(C) which maps T ∈ E ′ onto

LT : C −→ C, s �−→ 〈T, e−s·〉

induces an isomorphism from E ′ onto the Paley–Wiener algebra

A :=
{
f ∈ H(C) | ∃A, B, C > 0 ∀ s ∈ C : |f(s)| ≤ A(1 + |s|)BeC|Re(s)|}. (2.7)

It is not hard to verify [37, Thm. 4.35] that a∗
b∗ ∈ A for all a

b ∈ H. Using furthermore the identity a∗ =
L(

a(δ(1)
0 , δτ1 , . . . , δτk

)
)

for a ∈ R, which is standard in distribution theory, one obtains that H is (up to the
isomorphism a

b �→ L−1
(

a∗
b∗

) ∈ E ′) a subalgebra of E ′ and the map a
b ∈ EndC(E) defined in Theorem 2.2(c)

coincides with the associated convolution operator; cf. [11, Thm. 2.8] for the commensurate case. For any
h = a

b ∈ H we will define h∗ := a∗
b∗ , which coincides with the Laplace transform of the compact support

distribution associate with h. We will use the same notation also for matrices with entries in H. Notice
that the topology on E induces a topology on its dual E ′ which in turn leads to a topology on A.

In the sequel we shall identify the various objects in the way described above. Hence we arrive at the
following embeddings of commutative domains

R ⊆ H ⊆ A ⊆ H(C) and A ⊆ EndC(E).

Since E and A are both A–modules, every matrix R ∈ Ap×q induces two canonical maps, namely

R : Eq −→ Ep and R : Aq −→ Ap;

both of them will be important in the sequel. For ease of notation we shall denote both maps simply by
R. The specific meaning will always be clear from the context. However, we shall use the notation

kerE R ⊆ Eq, imER ⊆ Ep and kerA R ⊆ Hq, imAR ⊆ Ap (2.8)

for their respective kernels and images. For matrices R with entries in H we similarly define kerH R

and imH R. Notice that unimodular matrices, that are matrices from the group Glp(A) = {V ∈ Ap×p |
detV is a unit in A} or from Glp(H), act bijectively on Ep. Consequently, kerE UR = kerE R whenever
U is unimodular. From the inclusion H ⊆ R(D)[σ, σ−1] it is clear that the units of H are given by the
group H× := {ασl | α ∈ R\{0}, l ∈ Zk}. It needs slightly more effort to show that A× := {αeλs | α ∈
C\{0}, λ ∈ C} are the units of A; see [38, Lem. 2.5].
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Finally we introduce the notion of orthogonal subspaces. Given two spaces B ⊆ Eq and N ⊆ Aq, we let

B⊥ := {a ∈ Aq | ∀ w ∈ B : aTw = 0} and N⊥ := {w ∈ Eq | ∀ a ∈ N : aTw = 0}.

This induces a lattice antihomomorphism with respect to inclusion. For any shift invariant subspace
B ⊆ Eq one has B⊥⊥ = B. Moreover, for every R ∈ Ap×q we have [34, pag. 388]

(kerE R)⊥ = imART, (imER)⊥ = kerA RT, (kerA R)⊥ = imERT, (imER)⊥ = kerA RT. (2.9)

3 The Algebraic Setting for Delay–Differential Systems

Now we are ready to define the dynamical systems or behaviors to be investigated in this paper. The
definition of a behavior below is, of course, adapted to our investigation of linear, time-invariant systems
with smooth trajectories only.

Definition 3.1 A behavior with q external variables is a linear, shift invariant subspace of Eq. We

call a behavior B ⊆ Eq a delay–differential behavior (resp. a convolutional behavior) if it is of the form

B = kerE R, where R is a matrix in Hl×q (resp. Al×q) for some l ∈ N. We will also use the name system

in place of behavior.

Several remarks are in order.

Remark 3.2

(1) By definition a delay–differential or a convolutional behavior does always admit a kernel representa-
tion. Actually, the matrix R is said to be a kernel representation of B.

(2) Convolutional behaviors by themselves are not quite the issue of this survey. However, for a detailed
understanding of systems with incommensurate delays it will be necessary to investigate general
convolutional behaviors, too.

(3) The reason for defining delay–differential behaviors via matrices with entries in H instead of in R
can be found in (2.5). This implication (which is actually an equivalence, see Theorem 2.2(b)) shows
that systems with kernel representations over H will naturally enter each behavioral approach for
delay–differential systems. Indeed, the most basic problem for a behavioral theory which needs to be
solved is the uniqueness of kernel representations. More precisely, given two li × q-matrices R1 and
R2 with entries in R, we need to understand algebraically whether kerE R1 = kerE R2. Turning this
question around it will be important to understand which transformations on R1 do not change its
solution space kerE R1. Only slightly more general is the task of finding algebraic characterizations
for the inclusion kerE R1 ⊆ kerE R2. For purely differential systems, that is, Ri ∈ R[D]li×q, i = 1, 2,
this is nicely given as kerE R1 ⊆ kerE R2 iff R2 = XR1 for some X ∈ R[D]l2×l1 [31, Sec. 3.6]. In
other words, in order to compare two purely differential behaviors, it is enough to compare the
submodules of R[D]q generated by the rows of R1 and R2, which is a purely algebraic condition.
Now, equation (2.5) shows that the result is not true when R[D] is replaced by R. As a trivial
example, note that for instance kerE D ⊆ kerE (σ1 −1), but σ1−1

D �∈ R. As a consequence, if one aims
at an operator algebra which is closed under kernel inclusion in the above sense, then one is forced
to take also the quotients occurring in (2.5) into consideration, that is, the operators in H. Notice
that part (b) of Theorem 2.2 can be written as ker b(D, σ) ⊆ ker a(D, σ) iff a = xb for some x ∈ H.
This fact can be generalized to operators a, b ∈ H and even to matrices as follows.

Proposition 3.3 Let Ri ∈ Hpi×q, i = 1, 2, be two matrices and let rkR1 = p1. Then

kerE R1 ⊆ kerE R2 ⇐⇒ R2 = XR1 for some X ∈ Hp2×p1 .
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Sufficiency of R2 = XR1 is of course obvious and valid even without the rank condition on R1. The
necessity can be found in (see [14, Sec. 4]). It is deduced by some fairly standard algebraic arguments
from Theorem 2.2 together with the following generalization of the surjectivity result 2.1:

Let A ∈ Hn×m, then rkA = n ⇐⇒ imEA = En. (3.1)

For a general theory of systems described by delay–differential equations it is important to know as to
how restrictive the rank condition on R1 is in the proposition above. Notice that it is not at all clear
whether a behavior does always admit a representation kerE R with a full row rank matrix R. At this
point the theories for the commensurate and the incommensurate case diverge. In the commensurate
case the ring H enjoys some strong algebraic properties (it turns out to be a Bezout domain) with the
consequence that the proposition above holds true even without any rank condition on R1. This will be
shown in Section 5. The algebraic results presented therein have far-reaching consequences for systems
described by delay–differential equations with commensurate delays. In essence, a behavioral theory quite
parallel to the case of purely differential systems can be developed. On the other hand, for systems with
incommensurate delays the Proposition 3.3 fails in general without the rank condition on R1. In algebraic
terms, the difference to the commensurate case is due to the lack of the Bezout property. However, in
order to get some information about kernel inclusions in the general case, one has to resort to analytic
arguments. While operators with commensurate delays do always have a closed range, this is not true
for the general case. The closedness is exactly the requirement to be imposed on R1 in order that the
equivalence above remains valid. However, in this case the matrix X connecting R1 and R2 will have
entries in A even though R1 and R2 have entries in H or even in R. For this reason it is natural to
formulate the result right away for convolutional behaviors.

Theorem 3.4 Let Ri ∈ Ali×q, i = 1, 2, be two matrices and assume that imER1 is a closed subset of E l1 .

Then

kerE R1 ⊆ kerE R2 ⇐⇒ R2 = XR1 for some X ∈ Al2×l1 .

Proof: “⇐” is obvious and clearly holds without the closedness condition. Conversely, the inclusion
of the kernels may be restated as R2(kerE R1) = {0}, i.e., every row of R2 is in (kerE R1)⊥. However,
imER1 is closed if and only if imAR1

T is closed [21, Prop. 21.9] and therefore (kerE R1)⊥ = imAR1
T by

use of (2.9). Thus every row of R2 belongs to imAR1
T, which establishes the matrix X ∈ Al2×l1 . �

In [35, Thm. 4.1] it has been shown that the closedness of imER1 is necessary for the equivalence to be
valid for arbitrary operators R2. The following example illustrates that the previous theorem is the best
which can be obtained for any given pair R1, R2.

Example 3.5 Let

R1 =
[
1 − σ1

1 − στ

]
∈ R2, R2 = [D] ∈ R.

Notice that if τ is irrational, then the two entries of R∗
1 =

[
1 − e−s

1 − e−τs

]
have s = 0 as the unique common

zero. Therefore, by the spectral analysis theorem of [33], the solution space kerE R1 is given by the
constant functions and therefore it coincides with kerE R2. However, there is no matrix X ∈ H2×1 such
that R2 = XR1, since it can be shown that there are no x1, x2 ∈ H satisfying the Bezout equation
x∗

1(1− e−s)+x∗
2(1− e−τs) = s. To see this it is enough to consider the representations of the elements in

H suggested by Theorem 2.2 part (a) and to observe that in the ring R(s)[e−s, e−τs] the ideal generated
by 1 − e−s and 1 − e−τs can not be the whole ring. If τ is irrational, then it can be shown that the
previous Bezout equation is solvable over A —and this case corresponds exactly to the case when imER1

is a closed subset of E2— if and only if τ is a Liouville number [25] Notice that, since H(C) is a Bezout
domain, the equation is always solvable with x1, x2 ∈ H(C).
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Our main result of this section shows that the last statement of the previous example remains valid
in a very general context. It provides a characterization of kernel inclusions for arbitrary convolutional
operators. One should bear in mind, however, that general entire functions do not correspond to operators
on E . Hence the matrix X appearing in the theorem below has no operational meaning so that even the
direction “⇐” is not trivial.

Theorem 3.6 Let Ri ∈ Ali×q, i = 1, 2, be two matrices. Then

kerE R1 ⊆ kerE R2 ⇐⇒ R2 = XR1 for some matrix X ∈ H(C)l2×l1 .

Proof: The proof requires several steps.
1) We firstly provide the according result for kernels consisting of ‘polynomial–exponentials’ only. Let

PE :=

{
n∑

i=1

pi(t)eλit

∣∣∣∣ n ∈ N, λi ∈ C, and pi(t) ∈ C[t]

}
.

Restricting the kernels of Ri to PEq the statement above has been established in [24, pag. 278], thus

kerE R1 ∩ PEq ⊆ kerE R2 ∩ PEq ⇐⇒ there exists X ∈ H(C)l2×l1 such that XR1 = R2. (3.2)

2) In order to obtain the equivalence for kernels in Eq, we need the following description of closed shift
invariant subspaces of Eq:

B = B ∩ PEq for each closed shift invariant subspace B ⊆ Eq. (3.3)

This extends the famous result of Schwartz [33] about shift invariant subspaces in E to the vector case.
For the proof of “⊆” of (3.3) we will employ an analogous result which has been established in the case of
continuous functions in [30]. To this end, we introduce the following notation: let · ◦ and →◦ denote the
closure and the convergence in the space C := C(R, C) of continuous functions, equipped with its usual
Fréchet topology (uniform convergence on all compact sets). Recall that without any index we refer to
the topology and convergence on E .
We shall first prove the following inclusions:

B ⊆ B◦
= B◦ ∩ PEq

◦
⊆ B ∩ PEq

◦
= B ∩ PEq◦. (3.4)

Since B◦
is a shift invariant and closed subspace in the topology of C, the first identity is just the result

proven in [30]. The last equality follows from the simple fact that X ⊆ X ⊆ X ◦
for each set X ⊆ E .

The proof of the remaining inclusion relies on elementary properties of the compact supported smooth
functions ρ ∈ D, which, as explained in Section 2, can be identified with their Laplace transforms ρ(s) ∈ A.
Let w ∈ B◦ ∩PEq. Then there exists a sequence wn ∈ B such that wn →◦ w. It is easy to check that for
any ρ ∈ D, ρ(s)wn converges to ρ(s)w with respect to the topology of E ; this property of D is usually
called regularization.
Now, given any a(s) ∈ B⊥, one has a(s)T(ρ(s)wn) = ρ(s)a(s)Twn = 0, i.e. ρ(s)wn ∈ B⊥⊥ = B = B. This
means that ρ(s)w ∈ B = B, too. Since w ∈ PEq, a simple calculation shows that also ρ(s)w ∈ PEq and
therefore ρ(s)w ∈ B ∩ PEq.
Taking an approximate identity {ρk} (see [5, IV.21]), i.e. such that ρk(s) → 1 in the topology of A, we
get ρk(s)w → w, thus w ∈ B ∩ PEq. Hence B◦ ∩ PEq ⊆ B ∩ PEq and (3.4) follows.

It remains to prove (3.3). To this end let w ∈ B. By (3.4) there is a sequence wn ∈ B ∩ PEq such
that wn →◦ w. For every ρ ∈ D we have ρ(s)wn → ρ(s)w by the regularization property and, as before,
ρ(s)wn ∈ B∩PEq. Thus ρ(s)w ∈ B ∩ PEq and, taking an approximate identity {ρk}, we get ρk(s)w → w,
hence w ∈ B ∩ PEq.

3) Now we are ready to prove Theorem 3.6. Since kerE Ri, i = 1, 2, are closed shift invariant subspaces
of Eq, Equation (3.3) yields kerE Ri = kerE Ri ∩ PEq. This shows that kerE R1 ⊆ kerE R2 if and only if
kerE R1 ∩ PEq ⊆ kerE R2 ∩ PEq which, by (3.2), proves the theorem. �

8



3.1 Latent Variable Elimination

In the context of convolutional behaviors (or of delay–differential behaviors) a latent variable represen-
tation of a behavior B ⊆ Eq1 is defined to be a description of the form

B = {w ∈ Eq1 | R1w = R2v for some v ∈ Eq2}, (3.5)

where Ri ∈ Al×qi (or Ri ∈ Hl×qi), i = 1, 2. Systems descriptions of this type often arise after intercon-
necting two systems. In the setting of this survey the following question arises naturally: is B in (3.5)
a convolutional (or delay–differential) behavior in the sense of Definition 3.1, or, in other words, does B
admit a kernel representation B = kerE R?

Since an image representation of B, i.e. a representation of the type B = imEM , for some matrix M , is
a particular form of a latent variable representation (3.5), in this case latent variable elimination can be
seen as a way of passing from an image to a kernel representation.

While it is known that latent variable elimination can always be achieved for purely differential systems
over E [31, Thm. 6.2.6], this remains an open problem for general convolutional systems. Only the
following partial result is available.

Theorem 3.7 [39] Consider the behavior B in (3.5) and suppose that rkR∗
2(s) = p2 for all s ∈ C, where

p2 is the rank of R2. Then there exists some matrix Y ∈ At×q1 (resp. Ht×q1) such that B = kerE Y ,

hence B is a convolutional behavior.

As is shown in [39], the rank condition on R2 is equivalent to observability of the latent variable repre-
sentation, that is to say that R1w = R2v1 and R1w = R2v2 implies v1 = v2. Thus, the theorem implies
that for a behavior B which admits an observable latent variable representation, the closure B admits a
kernel representation.

Finally, we want to address the fact that the latent variable elimination problem for delay–differential
systems defined by (3.5) is closely related to the following conjecture.

3.8 Shapiro’s Conjecture (see [36]) For every p, q ∈ R there exists r ∈ R such that {λ ∈ C | p∗(λ) =
q∗(λ) = 0} = {λ ∈ C | r∗(λ) = 0}.

While the conjecture is open in this generality, there exist additional sufficient conditions for the statement
to be true (see [8]). Using essentially the same proof of Theorem 3.7 one can show that, if Conjecture 3.8
is true, then the closure of every behavior B defined by (3.5) admits a kernel representation.

3.2 Controllability of Delay–Differential Systems

In this section we shall investigate controllability for delay–differential behaviors. We shall start by
introducing the most fundamental notions of control theory, that are the concepts of inputs and outputs.
In behavioral theory, an input of a system B ⊆ Eq is a maximal subset wi1 , . . . , wim of the external
variables {w1, . . . , wq} which can be set freely. Precisely, the map B → Em which projects a trajectory
w = (w1, . . . , wq)T ∈ B onto the components wi1 , . . . , wim , has to be surjective and no bigger subset with
this property must exist; see [31, Def. 3.3.2]. In case an input exists, the collection of the remaining q−m

external variables is called the output of B and B is said to be an input/output (i/o–) behavior. It is
convenient to assume that, in case an i/o–partition exists, the external variables w = (w1, . . . , wq)T are
reordered in such a way that w = (uT, yT)T where u ∈ Em forms the input and y ∈ Ep forms the output.
The following theorem provides a simple characterization for the existence of an i/o–partition. For systems
with commensurate delays a proof can be found in [11, Thm. 4.2.3], while for the noncommensurate case
see [38, Theorem 3.8].
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Theorem 3.9 A delay–differential behavior B ⊆ Em+p with external variables w = (uT, yT)T defines an

i/o–behavior with input u ∈ Em and output y ∈ Ep if and only if B = kerE [P,−Q] for some P ∈ Hl×m

and Q ∈ Hl×p, where p = rk [P,−Q] = rkQ. In this case, there exists a matrix H ∈ R(D, σ)p×m such

that QH = P and it is called the formal transfer function of B. As a consequence, each delay–differential

behavior admits an i/o–partition (where the extreme case of m = 0 inputs is included).

The extreme case of behaviors with no inputs can be characterized in terms of the trajectories of the
behavior in an alternative way. In order to do so, we need the notation w|(−∞,0] for the restriction of the
function w, defined on R, to the closed left half line (−∞, 0]. Then one has just like for purely differential
behaviors [31, Thm. 3.2.5] the following characterization.

Proposition 3.10 A delay–differential behavior B ⊆ Eq has no inputs if and only if for every w ∈ B the

condition w|(−∞,0] = 0 implies w = 0. A behavior with this property is said to be autonomous.

Again, for systems with commensurate delays a proof is given in [11, Prop. 4.2.7]. For the general case
this can be seen as a consequence of Titchmarsh-Lions theorem on supports of distributions [24, pag.
277].

The above simply says that in an autonomous behavior the future of a trajectory is completely determined
by its past. At this point one should recall that behaviors B ⊆ Eq are by definition shift invariant, that
is σt0(B) = B for all t0 ∈ R. Therefore the time instance t0 = 0 occurring in the definition of w|(−∞,0] is
just a matter of choice and has no specific meaning by itself.

We now turn to another central notion of control theory, that is controllability. In behavioral theory,
controllability can be defined purely in terms of the trajectories of the behavior and independently of any
systems description. It expresses the capability of the system to steer each of its trajectories into every
other within finite time. Put another way, controllability describes the possibility to combine any past
of the behavior with any desired (far) future of the behavior. This can be made precise in the following
way.

Definition 3.11 ([31, Def. 5.2.2]) (a) For w, w′ ∈ Eq and t0 ∈ R define the concatenation of w and w′

at time T as the function w∧T w′ : R → Cq given by

(w∧T w′)(t) := w(t) for t < T and (w∧T w′)(t) := w′(t) for t ≥ T.

(b) A behavior B ⊆ Eq is called controllable if for all w, w′ ∈ B there exists T ≥ 0 and a function

c : [0, T ) → Cq such that w∧0c∧T σT w′ ∈ B.

Again, due to shift invariance of the behaviors under consideration, the particular time instances T ≥
t0 := 0 for the concatenation in (b) can be replaced by any other choices. Notice that the requirement
w∧0c∧T σT w′ ∈ B implies in particular that the concatenation is smooth. Since σT w′(T ) = w′(0), the
concatenation switches exactly from w(0) to w′(0) but allows for some finite time T ≥ 0 in order to make
the switching smooth and the trajectory be contained in B.

A variety of different characterizations for controllability are known for purely differential systems [31].
In trying to extend these results, we arrive at the following.

Theorem 3.12 Let B = kerE R, where R = (rij) ∈ Hl×q has rank p. Consider the following properties.

(a) rkR∗(s) = p for all s ∈ C.

(b) B = B ∩ Dq, where, again, D is the space of all functions in E with compact support and · denotes

the closure with respect to the topology of E ,

(c) B = imET for some T ∈ Hq×(q−p),

(d) Aq/B⊥ is a torsion free A–module,
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(e) Let R = [P,−Q], where Q ∈ Hl×p has rank p = rkQ = rkR, and let H ∈ R(D, σ)p×m be such that

QH = P . If R̂ = [P̂ ,−Q̂] ∈ Hp̂×(m+p) is such that p = rk Q̂ and Q̂H = P̂ , then B ⊆ kerE [P̂ ,−Q̂]. In

other words, B is a subbehavior of each behavior having the same formal transfer function.

(f) B is controllable,

(g) B has an image representation, that is, B = imET for some T ∈ Hq×(q−p),

(h) R has a generalized inverse over H, that is, there exists a matrix G ∈ Hq×l such that RGR = R.

Then the properties (a), (b), (c), (d), (e) are all equivalent and (a)⇐(f)⇐(g)⇐(h). Moreover, (a)�⇒(f).

Proof: The implications (a)⇔(b)⇔(c)⇐(f)⇐(g)⇐(h) have already been established in [38, 39]. The
fact that (a)�⇒(f) will be shown by an example in Section 4. It remains to prove (c)⇔(d)⇔(e).
(c) ⇒ (d): If a ∈ A\{0} and x ∈ Aq are such that ax ∈ B⊥, then we have axTTv = 0 for all v ∈ Eq−p.
This implies that axTT = 0, and, since A is a domain, xTT = 0. Thus x ∈ (imET )⊥ = B⊥.
(d) ⇒ (e): Let F be the field of fractions of A. The full row rank of the matrices QT and Q̂T implies
imFRT = imF R̂T. In order to show that kerE R ⊆ kerE R̂ it suffices to establish imAR̂T ⊆ imART = B⊥,
see (2.9). Let x ∈ imAR̂T. From imFRT = imF R̂T one deduces that there exists a ∈ A\{0} and y ∈ Ap

such that axT = yTR. This implies that ax ∈ B⊥ and from (d) we get x ∈ B⊥.
(e) ⇒ (c): Let T ∈ Hq×(q−p) be any full column rank matrix such that RT = 0. Then it is clear that
kerE R ⊇ imET and the converse inclusion remains to be proven. Let x ∈ kerA TT ⊆ Aq. By the rank
conditions on R and T we can deduce the existence of some a ∈ A\{0} such that ax ∈ imART ⊆ B⊥. This
implies kerE axT ⊇ kerE R and thus by Theorem 3.6 there exists a vector h ∈ H(C)l such that axT = hTR.

Partition x = (x1
T, x2

T)T, where x1 ∈ Aq−p and x2 ∈ Ap and define R̂ = [P̂ , Q̂] :=
[

P Q

x1
T x2

T

]
. Notice

that ax1
T = ahTP = ahTQH = ax2

TH , which yields x1
T = x2

TH . This shows that R̂ satisfies the
hypothesis of condition (e) and hence kerE R ⊆ kerE R̂ ⊆ kerE xT, implying x ∈ B⊥. Hence we derived
kerA TT ⊆ B⊥ and taking orthogonals leads to kerE R ⊆ imET as desired. �

The fact that the conditions of the previous theorem are not all equivalent suggests to call a behavior
B ⊆ Eq satisfying B = B ∩ Dq a weakly controllable behavior. Moreover, we define the weakly controllable
subbehavior of a given behavior B = kerE R, where R ∈ Hp×q, as the space

Bc := B ∩Dq.

The weakly controllable subbehavior Bc of B is a (closed) behavior in the sense of Definition 3.1. However,
it is not known whether Bc is a delay–differential or convolutional behavior, precisely, that Bc admits
a kernel representation. We can prove, however, that the weakly controllable subbehavior of a delay–
differential behavior always admits a dense image representation like the one introduced in the previous
theorem:

Proposition 3.13 Let B = kerE R, where R ∈ Hl×q has rank p and let Bc be its weakly controllable

subbehavior. Then there exists a full column rank matrix M ∈ Hq×(q−p) such that

Bc = imEM.

Furthermore, B′ ⊆ Bc for every weakly controllable behavior B′ contained in B.

Proof: Let M ∈ Hq×(q−p) be any matrix of full column rank such that RM = 0. Define Bcs := B ∩Dq.
It is clear that imDM ⊆ Bcs. By continuity of the operator M we can argue that imDM ⊆ imDM . Using
D = E this implies imEM ⊆ imDM ⊆ Bcs = Bc and it remains to prove the other inclusion. To this aim
we shall show

(imEM)⊥ ⊆ B⊥
cs, (3.6)
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from which Bc ⊆ imEM follows by taking orthogonals. As for (3.6), let a ∈ (imEM)⊥. Then for each
v ∈ Eq−p we have aTMv = 0 showing that aTM = 0. The rank condition on M ensures that there exist
α ∈ A\{0} and b ∈ Al such that αaT = bTR. Pick now w ∈ Bcs. Then αaTw = bTRw = 0. Using the
identifications of Section 2, we have Bcs ⊆ Dq ⊆ (E ′)q = Aq, thus aTw is an element of the domain A
and the identity αaTw = 0 implies aTw = 0. This shows that a ∈ B⊥

cs and thus (3.6) is proved. The last
assertion of the proposition is now straightforward. �

The following theorem shows that any delay–differential behavior can be decomposed as the sum of its
weakly controllable subbehavior and an autonomous subbehavior.

Theorem 3.14 Consider a behavior B = kerE R, where R ∈ Hl×q and let Bc be its weakly controllable

subbehavior. Assume that R = [P, Q] where Q ∈ Hl×p has rank p = rkR. Then

B = Bc + Ba,

where Ba is the autonomous subbehavior defined as Ba :=
{�

0

y

� ∣∣∣ y ∈ kerE Q
}

= kerE
�
I 0

0 Q

�
.

Proof: Only “⊆” requires proof. To this end, put m := q − p and let M ∈ Hq×m be a full column rank
matrix satisfying the assertion of Proposition 3.13. Partition

M =
[
M1

M2

]
,

where M1 ∈ Hm×m and M2 ∈ Hp×m. The rank conditions imposed on M and Q imply that M1 is
nonsingular and thus is surjective as operator from Em to Em, see (3.1).
Now, let w = (uT, yT)T ∈ B. Pick v ∈ Em such that u = M1v and put ỹ := M2v. Then w = w1 +(w−w1),
where

w1 :=
(

u

ỹ

)
∈ imEM ⊆ Bc and w − w1 =

(
0

y − ỹ

)
∈ kerE

[
I 0
0 Q

]
= Ba,

since R(w − w1) = Rw − Rw1 = 0. �

We close this section with a list of open problems.

Open Problems

(1) The main open problem concerns the latent variable elimination, whose general solution is connected
with Shapiro’s conjecture.

(2) Another open problem which can be shown to be related to the Shapiro’s conjecture concerns the
equivalence of kernel representations. We conjecture that every delay–differential behavior admits a
kernel representation with a full row rank matrix.

(3) In the context of controllability analysis we know that conditions (a) and (f) of Theorem 3.12 are
not equivalent but we do not know yet whether (f), (g), and (h) are equivalent. In other words, we
have no algebraic characterization of controllable behaviors.

(4) For a certain class of behaviors we know that all the conditions of Theorem 3.12 are equivalent
(see [38, 15]). This class includes systems in state space form. It would be important to continue
this investigation and to understand how pathological are the behaviors for which this equivalence
does not hold.

(5) The theory of behavioral control by interconnection is completely open for delay–differential systems
with incommensurate delays.
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4 A Counterexample

In this section we present an example of a delay–differential behavior satisfying condition (a) of Theo-
rem 3.12 but which is not controllable and hence violates condition (f) of that theorem.

Let τ ∈ R+ be a Liouville number, that is, a transcendental number satisfying the following condition [27,
pag. 91]: for every positive integer K ∈ N there exist an infinite number of pairs (n, d) ∈ N2 such that
|dτ − n| ≤ d−K . Consider the matrices

R = [a, b] ∈ H1×2, M = [−b, a]T ∈ H2×1, where a =
1 − στ

D
, b = 1 − σ1 ∈ H. (4.1)

The behavior serving as an example is given by B := kerE R. Since τ is an irrational number the
characteristic functions a∗(s) = (1 − e−sτ )/s and b∗(s) = 1 − e−s ∈ A have no common zeros, and
therefore condition (a) of Theorem 3.12 is satisfied. Furthermore, the proof of the equivalence of (a)
and (c) of that theorem yields

B = kerE R = imEM. (4.2)

We shall construct a function w ∈ kerE R such that there is no trajectory steering from zero to w in
finite time, and thus the behavior is not controllable. This also proves that B does not admit an image
representation since, by Theorem 3.12 that would imply controllability (for a more direct proof in a
similar case see [38]).

The specific property of the delay τ is essential for the proof. We will start with some preparation. By
the Liouville property it is possible to find a strictly increasing sequence dk ∈ N \ {0} such that

∀ k ∈ N \ {0} ∃ nk ∈ N : |dkτ − nk| ≤ d1−2k
k . (4.3)

The monotonicity of dk allows us to define another monotonic sequence:

cl =

⎧⎪⎪⎨
⎪⎪⎩

1 if l = 0;

k if l = dk;

cl−1 if l �= dk ∀k ∈ N.

Note that also cl is divergent and moreover

cdk
= k. (4.4)

We will construct a function w : R → R2 having the following structure:

w =
(

0
x

)
, x ∈ E . (4.5)

The condition w ∈ kerE R is equivalent to say that x ∈ kerE b, which by definition of b means that x is
periodic with period one. It is known that every sufficiently regular 1-periodic function can be written
as a Fourier series [10, pag. 46]

x(t) =
∑
l∈Z

xl(t) =
∑
l∈Z

ule
j2πlt, where ul =

∫ 1

0

x(t)e−j2πltdt. (4.6)

Moreover [10, pag. 42], any series x(t) =
∑

l∈Z
ule

j2πlt with ul ∈ C defines a function x ∈ E if and only
if liml→∞ ln|ul| = 0 for all n ∈ N. We have x ∈ C∞(R, R) if and only if u−l = ul for each l ∈ Z. Let us
define a real-valued function x by choosing the coefficients ul = u−l in such a way that

|ul| = l−cl ∀ l ∈ N. (4.7)
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Then ln|ul| = lnl−cl = ln−cl → 0 since cl is increasing and thus the exponent is negative for sufficiently
big l. As a consequence, x ∈ E and the function w in (4.5) belongs actually to B = kerE R.

We wish to show now that the behavior B in (4.2) is not controllable, that is, B does not satisfy
Theorem 3.12(f). We proceed by contradiction. Then there exists some T > 0 and some function
c : [0, T ) → C2 such that the trajectory w̃ := 0∧0c∧T (σT w) is in B. By possibly shifting the trajectory
w̃ in forward direction, we can assume T ∈ N and the periodicity of x implies w̃ = 0∧0c∧T w. Denoting
the two components of c by c1 and c2, we have w̃ = (w̃1, w̃2)T, where

w̃1 := 0∧0c1∧T 0, w̃2 = w̃21 + w̃22 with w̃21 = 0∧0c2∧T 0 and w̃22 = 0∧T x.

Notice that w̃1 and w̃21 have compact support and thus can be regarded as elements of E ′. Using the
identifications of Section 2 (that is, identifying distributions with compact support with their Laplace
transform), we have w̃1(s), w̃21(s) ∈ A. Furthermore, it is easy to check that σ−T bw̃22 = 0∧0x∧10. Hence
this function is in E ′, too, and its Laplace transform is given by X ∈ A where

X(s) =
∫ 1

0

x(t)e−stdt.

Since w̃ ∈ kerE R = kerE [a, b] we have Rw̃ = aw̃1 + bw̃21 + bw̃22 = 0, which after Laplace transformation
can be rewritten as

a∗(s)w̃1(s) + b∗(s)w̃21(s) = −e−sT X(s).

By rearranging the equation, this yields

a∗(s)f(s) + b∗(s)g(s) = X(s), (4.8)

for some f, g ∈ A.

We want to evaluate equation (4.8) at s = j2πdk. First note that b∗(j2πl) = 0 and that, by (4.6),
X(j2πl) = ul for every l ∈ Z. Therefore, since from (4.7) and (4.4) it follows that |udk

| = d
−cdk

k = d−k
k ,

we get

|a∗(j2πdk)||f(j2πdk)| = d−k
k . (4.9)

The growth condition (2.7) implies for f ∈ A the existence of A, B > 0 such that |f(jy)| ≤ A(1 + |y|)B

for all y ∈ R. Moreover, by definition of a and (4.3), we get

|a∗(j2πdk)| =
|1 − e−j2πdkτ |

|j2πdk| =
|e−jπdkτ | |ejπdkτ − e−jπdkτ |

2πdk
=

| sinπdkτ |
πdk

=
| sin π(dkτ − nk)

πdk
≤ |π(dkτ − nk)|

πdk
≤ d−2k

k .

Now, upon using (4.9) we obtain the contradiction

1 = dk
k|a∗(j2πdk)||f(j2πdk)| ≤ d−k

k A(1 + 2πdk)B ∼ A(2π)BdB−k
k → 0, for k → ∞,

since B is a fixed constant depending only on f . This shows that the behavior B = kerE R is not
controllable.

5 Delay–Differential Systems with Commensurate Delays

In this section we shall concentrate on the case where only commensurate delays occur in the delay–
differential operator (2.1) or (2.2). Hence σ := στ1 is the forward shift of length τ1 > 0, which after
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suitable rescaling of the time axis can be assumed to be τ1 = 1. Thus, throughout this section R[D, σ] is
a bivariate polynomial ring and, according to Theorem 2.2(a), the operator algebra to be considered in
this context is given by

H =
{ a

σlφ

∣∣∣ a ∈ R[D, σ], l ∈ N0, φ ∈ R[D],
a∗

φ∗ ∈ H(C)
}

.

In Section 5.1 we shall present some of the algebraic properties of H. It will turn out that H enjoys
properties which let its matrices behave almost like matrices over Euclidean domains like, say, over R[D].
This will lead to a refinement of the results about general delay–differential behaviors presented in the
previous section. Indeed, we will derive a correspondence between delay–differential behaviors and their
kernel representations which is quite similar to the one for purely differential systems. In Section 5.2 we
shall see how this machinery can be used to obtain the equivalence of all the properties connected to
controllability in Theorem 3.12. Finally, we will address the issue of interconnection of delay–differential
systems with commensurate delays.

5.1 A Galois–Correspondence between Systems and Operators

The specific algebraic feature of the commensurate case is that H ⊆ R(D)[σ, σ−1] where

R(D)[σ, σ−1] =
{ a

σlφ

∣∣∣ a ∈ R[D, σ], l ∈ N0, φ ∈ R[D]
}

is a univariate Laurent polynomial ring over a field and thus a Euclidean domain. Hence one can perform
long division within R(D)[σ, σ−1]. Furthermore, for each aσ−lφ−1 ∈ R(D)[σ, σ−1], the meromorphic func-
tion a∗(φ∗)−1 has only finitely many poles in the complex plane (this is also true in the incommensurate
case). A careful combination of these two facts allows one to perform certain calculations of R(D)[σ, σ−1]
even within the subring H. In other words, one calculates in R(D)[σ, σ−1] and at the same time controls
the possibly arising poles. As a result one obtains the following strong algebraic properties of H.

Theorem 5.1 (a) H is a Bezout domain, that is, each two elements a, b ∈ H have a greatest common

divisor d ∈ H, which is unique up to units in H and can be expressed as a linear combination

d = xa + yb with suitable coefficients x, y ∈ H.

(b) Each matrix is left equivalent to an upper triangular matrix. Precisely, for each matrix R ∈ Hp×q

there exists a matrix U ∈ Glp(H) such that UR is upper triangular.

(c) H is an elementary divisor domain, that is by definition, for each matrix R ∈ Hp×q with rank ρ there

exist V ∈ Glp(H) and W ∈ Glq(H) such that

V RW = diagp×q(r1, . . . , rρ)

where the symbol diagp×q(r1, . . . , rρ) means a p × q matrix having r1, . . . , rρ as the first ρ elements

of the diagonal and all the other entries equal to zero. The elements r1, . . . , rρ ∈ H are the invariant

factors of R. Hence they are unique up to units in H and ri divides ri+1 in H for i = 1, . . . , ρ− 1. In

other words, matrices over H admit a Smith–form.

(d) Let A ∈ Hn×q and B ∈ Hm×q be two matrices of full row rank. Let rk [AT, BT] = r. Then A and B

have a greatest common divisor D ∈ Hr×q, denoted by D = gcrd(A, B), which has full row rank, is

unique up to left equivalence, and can be expressed as a linear combination D = XA + Y B for some

matrices X and Y with entries in H.

Moreover, A and B have a least common left multiple M ∈ H(n+m−r)×q of full row rank which is

unique up to left equivalence and denoted by M = lclm(A, B). In case r = n + m, the matrix M is

the empty matrix.

Part (a) has been proven in [12, Prop. 3.1, Thm. 3.2]. In special cases, basically, if the factors are
coprime and one of the factors is monic in s, a Bezout identity has been earlier derived in a fairly
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different setting, see [29, Sec. 4] and [19, (3.2),(4.14)]. In [4, Prop. 7.8] a Bezout identity 1 =
∑n

j=1 fjgj

has been obtained for exponential polynomials fj ∈ C[s, eis] with coefficients gj in the corresponding
Paley–Wiener algebra. The parts (b) and (d) are valid for every commutative Bezout domain. Part (c)
follows from a certain factorization property in H called adequateness [12, Lem. 3.4]. It is a classical
result of ring theory [16, 20] that each adequate commutative Bezout domain is an elementary divisor
domain. It is also worth mentioning that it is still an open conjecture whether every commutative Bezout
domain is an elementary divisor domain, see [7, pag. 492, ex. 7] and [23].

Remark 5.2 (1) The properties above imply that matrices over H behave almost like matrices over a
Euclidean domain. In particular, from (c) it follows that R ∈ Hp×q has a right inverse T ∈ Hq×p

if and only if [Ip, 0] is a Smith–form of R and this in turn is equivalent to R being completable to
a unimodular matrix [RT, ST]T ∈ Glq(H). All this is equivalent to the property rkR∗(s) = p for all
s ∈ C. Furthermore, using a Smith–form one observes that each full row rank matrix R ∈ Hp×q can
be factored as R = BRc where B ∈ Hp×p is nonsingular (i. e. detB �= 0) and Rc ∈ Hp×q is right
invertible over H.

(2) It should be mentioned that H is not a principal ideal domain since it contains ideals which are not
finitely generated. In other words, H is not factorial and not Noetherian [12, Prop. 3.1]

(3) Part (a) and hence the other assertions fail in the incommensurate case [14, Exa. 5.13]; see also
Example 3.5.

Before we illustrate how to compute in practice a Bezout identity for given functions a, b ∈ H, we wish to
present the immediate consequences of the theorem for systems with commensurate delays. First of all,
using left equivalent triangular forms, one observes that each delay–differential behavior admits a full row
rank kernel representation. As a consequence, the rank condition on R1 in Proposition 3.3 can be dropped
and one arrives at the complete delay–differential analogue of the characterization given in [31, Sec. 3.6]
for purely differential behaviors. Some more detailed arguments even lead to a Galois–correspondence,
that is, an anti–isomorphism between the lattice of delay–differential behaviors in Eq on the one hand
and the lattice of finitely generated submodules of Hq on the other. We summarize as follows.

Theorem 5.3 Let Ri ∈ Hli×q, i = 1, 2, be two matrices and put Bi := kerE Ri. Then

(1) B1 ⊆ B2 ⇐⇒ R2 = XR1 for some matrix X ∈ Hl2×l1 .

In particular, if rkRi = li, then B1 = B2 iff l1 = l2 and R2 = XR1 for some X ∈ Gll1(H).
Let rkRi = pi for i = 1, 2 and assume that li = pi. Then

(2) B1 ∩ B2 = kerE gcrd(R1, R2),

(3) B1 + B2 = kerE lclm(R1, R2).
As a consequence, the maps

B �−→ B⊥ ∩Hq = {h ∈ Hq | ∀ w ∈ B : hTw = 0}, M �−→ M⊥ = {w ∈ Eq | ∀ h ∈ M : hTw = 0}

are inverses of each other and form anti–isomorphisms between the lattice of all delay–differential behav-

iors B in Eq and the lattice of all finitely generated submodules M of Hq.

The parts (2) and (3) are standard consequences of (1) together with the properties of the greatest common
right divisor and least common left multiple over a commutative Bezout domain and the surjectivity
in (3.1). Notice that the anti–isomorphism maps a finitely generated submodule of Hq onto its solution
space in Eq and a behavior onto its annihilator in Hq. For details see [12, Prop. 4.4] and [13, Sec. 4.1].

Along the same line of general algebraic arguments one can also show that the latent variable elimination
problem (see (3.5)) is always solvable. Precisely we have

Theorem 5.4 (a) The image of a delay–differential behavior under a delay–differential operator is a

delay–differential behavior again. Precisely, if Ri ∈ Hli×q are two matrices, then R1(kerE R2) =
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kerE X for some matrix X with entries in H. In particular, imER1 is a delay–differential behavior

and thus a closed subspace of E l1 .

(b) For two matrices Ri ∈ Hl×qi the space B := {w ∈ Eq1 | R1w ∈ imER2} is a delay–differential

behavior, that is, B = kerE Y for some matrix Y ∈ Ht×q1 .

Part (a) follows upon noticing that w ∈ R1(kerE R2) if and only if (wT, 0)T ∈ imE [R1
T, R2

T]T and resorting
to a left equivalent triangular form for [R1

T, R2
T]T along with the surjectivity in (3.1). Part (b) is a direct

consequence of (a) because B = [Iq1 , 0](kerE [R1,−R2]).

This result shows that for commensurate delays the class of delay–differential behaviors in the sense of
Definition 3.1 is not as restrictive as it appears on first sight. Images of operators and projections of
delay–differential behaviors, extracting the desired (manifest) variables, are delay–differential behaviors
again.

At the end of this section we want to address the computability of the various objects arising in the
previous theorems. In practice one wishes to know, of course, whether (and how) a kernel representation
of, say, kerE R1∩kerE R2 or R1(kerE R2) can actually be computed from the given data R1 and R2. A brief
study of the corresponding constructions reveals that this question reduces in essence to the computation
of a greatest common divisor along with a representing Bezout identity for given operators in H. The
following example should illustrate how to proceed for calculating a Bezout identity from the given data.

Example 5.5 (a) Let a = σ + 1 and b = D + 1 ∈ Q[D, σ] ⊆ H. Then a and b are coprime in H and
for a Bezout identity 1 = xa + yb in H one needs y∗ = (1 − x∗a∗)(s + 1)−1 ∈ H(C) in order to have
y ∈ H. Since a∗(s) = e−s + 1 (recall that σ is the forward shift of unit length) this leads to the sole
condition x∗(−1) = (e + 1)−1 for x ∈ H. Thus one obtains the Bezout identity 1 = xa + yb where
x = (e + 1)−1 ∈ R is a constant and y =

(
1 − (e + 1)−1(σ + 1)

)
(D + 1)−1 ∈ H.

(b) Let a = (σ − e)(D + 1)−1, b = D + σ ∈ H. Again, a and b are coprime in H. In order to obtain a
Bezout identity one first observes that a and b are coprime also in the Euclidean domain R(D)[σ]. In
this larger ring a denominator free version of a Bezout identity is given by

x1a + y1b = D + e ∈ R[D] (5.1)

where x1 = −(D + 1) and y1 = 1. Now one has to adjust the coefficients x1 and y1 in such a way
that they become divisible by D + e within the ring H. Precisely, one wants some h ∈ H such that

x =
x1 + hb

D + e
and y =

y1 − ha

D + e
are in H, (5.2)

for then 1 = xa + yb forms a desired Bezout equation. The function h ∈ H can be found as follows.
Equation (5.1) implies (

x∗
1(−e)

y∗
1(−e)

)
∈ kerR[a∗(−e), b∗(−e)] = im R

[−b∗(−e)
a∗(−e)

]
.

Indeed, with the given data a, b, x1, and y1 ∈ H one can check that(
x∗

1(−e)
y∗
1(−e)

)
=

[−b∗(−e)
a∗(−e)

]
h, where h =

1 − e

ee − e
∈ R.

Choosing the function h ∈ R ⊆ H yields (5.2) and thus the Bezout identity 1 = xa + yb in H.

The example above is typical for the general situation in the way how to proceed for deriving a Bezout
identity. The only difference is that in general several steps are needed in order to eliminate the zeros
(like −e in (b)) of a Bezout identity in R(D)[σ]; see [11, Rem. 2.5] for a general procedure. The example is
however not typical in the sense that in both cases above a greatest common divisor of the given elements
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was simply found by inspection. This is of course not always possible. In any case, use of the fact that
R(D)[σ] is Euclidean along with a careful handling of the denominators which arise when calculating in
that ring, one can build even a procedure which upon any input a, b ∈ H produces a greatest common
divisor of a and b along with a representing Bezout identity; for details see [13, Thm. 3.1.5].

Let us now turn to a different aspect of the example. Assume we are interested in symbolic computability of
Bezout identities (and consequently of upper triangular forms etc.), that is, we wish exact computations,
not numerical. For the notion of symbolic computability (also known as effectiveness or decidability)
we refer the reader to standard literature of computer algebra, for instance [6, 1]. As an indispensable
prerequisite for symbolic computations one needs, of course, a way to represent the objects on a computer.
It turns out that this part is the main (and only) obstacle for the symbolic computability of Bezout
identities in H. We wish to briefly illustrate the problem arising in this context. Since rational numbers
(as opposed to arbitrary real numbers) are symbolically representable on a computer, it is reasonable to
investigate the issue for functions with coefficients in Q. Consider now Example 5.5 again. In Part (a)
we started with two polynomials in Q[D, σ] and derived a Bezout equation where the constants are in
the extension field Q(e) of Q. In the second example we were given two functions with coefficients in
Q(e); in that case we were forced to pass to the even larger coefficient field Q(e, ee) in order to derive a
Bezout identity. One should have in mind that such successive Bezout identities (using the output of one
equation as input for the next one) are for instance to be computed for the transformation of a matrix
into triangular form. For symbolic computability, in fact for the symbolic representation, it is important
to have some information about the algebraic structure of the coefficient fields involved. While this is
completely understood for the field Q(e), since e is transcendental, this is not at all clear for the field
Q(e, ee). Indeed, it seems to be unknown whether the transcendence degree of Q(e, ee) is two, which
is what one would expect. This is a very specific case of a more general conjecture in transcendental
number theory attributed to Schanuel.

5.6 Schanuel’s Conjecture (see [22, pag. 687]) If λ1, . . . , λl are complex numbers, linearly independent

over Q, then the transcendence degree of Q(λ1, . . . λl, e
λ1 , . . . , eλl) is at least l.

Notice that in the special case where λ1, . . . , λl are algebraic numbers, the well-known Theorem of
Lindemann–Weierstrass [17, pag. 277] tells us that the transcendence degree of Q(λ1, . . . λl, e

λ1 , . . . , eλl)
is even equal to l. A verification of the conjecture would answer a lot of questions concerning the algebraic
independence of given transcendental numbers, like, say, e and π (where it is in fact even unknown whether
e + π is irrational!), or e and ee.

As for the calculations in H, it can be shown that an affirmative answer of Schanuel’s conjecture would
imply the symbolic computability of a greatest common divisor along with a Bezout identity for any finite
set of operators in H with coefficients in a computable field. The key point is that for the calculation
of a Bezout identity starting with operators having coefficients in a computable field F (like, say, Q or
Q(e)), one has to adjoin successively elements λ ∈ C which are algebraic over F along with the element
eλ ∈ C. This leads to field extensions of Q of the type considered by Schanuel. Thanks to the fact that
the elements λ ∈ C do not contribute to the transcendence degree, the conjecture would yield the exact
transcendence degree and even a transcendence basis. It can be shown that this suffices for symbolic
representation and computability. The lengthy details of this topic are elaborated in [13, Sec. 3.5].
Needless to say, that these considerations are still fairly theoretical, since in general the symbolic terms
needed even for a single Bezout identity turn easily into rather huge expressions.

5.2 Controllability and Interconnections

In this section we utilize the machinery of Section 5.1 to launch a behavioral control theory for systems
with commensurate delays. The detailed elaboration of this section, performed completely in the algebraic
context of the commensurate case, can be found in [13, Ch. 4].
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First observe that, since we can assume full row rank kernel representations, each i/o–behavior B has
a kernel representation B = kerE [P, Q] for some P ∈ Hp×m and some nonsingular Q ∈ Hp×p, where
p = rk [P, Q] = rkQ. Hence, the formal transfer function of B is the matrix Q−1P ∈ R(D, σ)p×m.

In the commensurate case it is possible to analyze causality relations (with respect to time) between the
external variables. The corresponding notion is called nonanticipation in behavioral control theory.

Theorem 5.7 Let [P, Q] ∈ Hp×(m+p) and detQ �= 0. Hence B := kerE [P, Q] ⊆ Em+p is an i/o–behavior

with input u ∈ Em and output y ∈ Ep. The following are equivalent.

(a) For all u ∈ Em satisfying u|(−∞,0] = 0 there exists y ∈ Ep such that y|(−∞,0] = 0 and (uT, yT)T ∈ B.

(b) Q−1P ∈ R(D)[[σ]]p×m, that is, the entries of Q−1P are formal power series in σ with coefficients in

the field R(D).
If one of these conditions is satisfied, the delay–differential behavior B is said to be nonanticipating.

Recall that the formal transfer function Q−1P does always exist in R(D, σ)p×m. Since R(D, σ) ⊆
R(D)((σ)), the space of formal Laurent series in σ with coefficients in R(D), part (b) above simply
requires that Q−1P does not contain any negative powers of σ, hence no backward shifts.
The most convenient way for proving the theorem is by interpreting Q−1P ∈ R(D, σ)p×m as a map from
Em
+ to Ep

+, where E+ denotes the space of functions in E with support bounded on the left. This is indeed
possible since one can canonically embed R(D, σ) in the space of all distributions having support bounded
on the left; for details see [11, Thm. 2.6] and [13, Sec. 4.2].

The result above might surprise on first sight if applied to purely differential behaviors, i. e. to an
operator [P, Q] ∈ R[D]p×(m+p). In that case, it simply says that every i/o–behavior is nonanticipating.
No properness of the associated formal transfer function Q−1P arises. This is due to the fact that only
C∞–trajectories are being considered and has been pointed out already in [40, pag. 333]. Only if more
general function spaces, say L1

loc, are taken into consideration, the properness of Q−1P is of specific
importance, see [40] for purely differential behaviors and [13, Rem. 4.2.4] for the case of (commensurate)
delay–differential systems.

We now turn to controllability for delay–differential behaviors. The following theorem shows that, in the
case of commensurate delays, all the conditions of Theorem 3.12 are equivalent; recall that this is not the
case for the incommensurate case. Thanks to left equivalent upper triangular forms it suffices, again, to
restrict to full row rank kernel representations.

Theorem 5.8 Let B = kerE R, where R ∈ Hp×q has rank p. Then the following are equivalent.

(a) rkR∗(s) = p for all s ∈ C,

(b) Hq/(Hq ∩ B⊥) = Hq/imH RT is a free H–module,

(c) B is a subbehavior of each delay–differential behavior having the same formal transfer function,

(d) B is controllable,

(e) B has an image representation,

(f) R has a right inverse over H.

Proof: The implications (a)⇔(c)⇐(d)⇐(e)⇐(f) result from Theorem 3.12. Part (b) above is the
analogue of part (d) in Theorem 3.12 together with the fact that any finitely generated torsion-free
module over a Bezout domain is free. As for (f), notice that for full row rank matrices the notions of
generalized inverses and right inverses coincide. The part (a)⇒(f) has been discussed in Remark 5.2. �

Remark 5.9 A detailed study of the equivalences above (see, e. g., the direct proof of (a)⇔(d) in [12,
Sec. 5]) reveals that controllability of B is equivalent to the capability of steering each trajectory in finite
time to zero. Precisely, B is controllable if and only if for all w ∈ B there exists T ≥ 0 and c : [0, T ) → Cq

such that w∧0c∧T 0 ∈ B.
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The following theorem shows that in the commensurate case the weakly controllable subbehavior is
actually a controllable delay–differential behavior which, moreover, enjoys a simple description.

Theorem 5.10 Let R ∈ Hp×q be a matrix with rank p and put B = kerE R. Factor R as R = BRc where

B ∈ Hp×p and Rc ∈ Hp×q is right invertible. Then the weakly controllable subbehavior Bc = B ∩ Dq of B
is a controllable delay–differential behavior and given by Bc = kerE Rc. Moreover, if M ∈ Hq×(q−p) is

such that RM = 0, then Bc = imEM . Finally, B′ ⊆ Bc for every controllable delay–differential behavior

B′ contained in B. We call Bc the controllable subbehavior of B.

Proof: Let B̂ := kerE Rc, thus B̂c is controllable. From Proposition 3.13 we know that B̂c ⊆ Bc. For
the converse inclusion, pick w ∈ B ∩ Dq. Then BRcw = 0 and thus Rcw ∈ kerE B ∩ Dq. Since kerE B is
autonomous, we obtain Rcw = 0 (see 3.9 and 3.10). Thus B ∩ Dq ⊆ B̂c and consequently Bc ⊆ B̂c. The
image representation Bc = imEM follows now from Proposition 3.13 (and its proof) together with the
fact that Bc is a closed space. �

So far we have only been concerned with the analysis of a single behavior. Now we shall direct our
attention to the interconnection of two behaviors, one of which being regarded the given plant, the other
one the to-be-designed controller. Indeed, a controller does constitute a behavior itself. It processes (part
of) the output of the to-be-controlled system and computes (part of) the inputs for that system with
the purpose to achieve certain desired properties of the overall behavior, like for instance stability. Thus,
the plant and the controller are interconnected to form a new system. In the behavioral framework the
interconnection can be written as the intersection of two suitably defined behaviors. The underlying idea
is simply that the trajectories of the overall system have to satisfy both sets of equations, those governing
the plant behavior and those imposed by the controller behavior. In order to obtain an efficient controller
one has to add some regularity condition on the interconnection.

Definition 5.11 (see [40, pag. 332]) The interconnection of two delay–differential behaviors Bi =
kerE Ri ⊆ Eq, i = 1, 2, where Ri ∈ Hpi×q, is defined to be the delay–differential behavior B := B1 ∩ B2.

The interconnection is called regular if rk [R1
T, R2

T]T = rkR1 + rkR2.

The concept of a regular interconnection is rather natural in the behavioral setting as it can be seen
by Theorem 3.9. Indeed, the number q of external variables minus the rank of a kernel representation
represents the number of input variables of a behavior. If one thinks of one of the interconnecting
components as the controller, it is natural to require that each linearly independent equation of the
controller should put a restriction onto one additional input channel, for otherwise the controller would

be inefficient. As a consequence, the resulting interconnection B = kerE
�
R1

R2

�
of B1 and B2 is left with

q − rkR1 − rk R2 input variables, which is exactly the regularity condition.

Obviously, an interconnection is a subbehavior of either of its components. It is fairly simple to character-
ize algebraically those subbehaviors of a given behavior, which can be achieved as regular interconnections
from that given behavior. But it is also not hard to give a dynamical characterization purely in terms of
the trajectories involved.

Theorem 5.12 Let B̂ ⊆ B ⊆ Eq be two delay–differential behaviors and assume B̂ = kerE R̂ where

R̂ ∈ Hp̂×q is a matrix with rank p̂. Then the following statements are equivalent.

(a) There exists a delay–differential behavior B′ ⊆ Eq such that B̂ = B ∩ B′ is a regular interconnection

of B and B′,

(b) the image R̂(B) ⊆ E p̂ of B is controllable,

(c) B = Bc + B̂, where Bc denotes the controllable subbehavior of B,

(d) B is B̂–controllable, that is, for each w ∈ B there exist T ≥ 0, ŵ ∈ B̂, and a function c : [0, T ) → Cq

such that w∧0c∧T ŵ ∈ B.
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If any of these equivalent conditions is satisfied, the subbehavior B̂ is said to be achievable via intercon-

nection from B.

From a behavioral point of view, part (d) is the most important characterization for it provides us with
an intrinsic criterion for regular interconnections; it is purely in terms of trajectories and does not resort
to any kind of representation of the behaviors. Observe that B̂–controllability can be understood as
the capability to steer every trajectory of B into the subspace B̂ in finite time. In light of Remark 5.9
we see that controllability in the sense of the previous section is the same as {0}–controllability. The
characterization above is close to what has been obtained for multidimensional systems in [32, Thm. 4.2].

Proof of Theorem 5.12: Let B = kerE R for some R ∈ Hp×q having full row rank. The inclusion
B̂ ⊆ B implies a relation XR̂ = R where X ∈ Hp×p̂ is a full row rank matrix. One easily verifies that
R̂(B) = kerE X .

(a) ⇒ (b) Let B′ = kerE R′ where R′ ∈ Hp′×q has rank p′. Then B̂ = kerE
�

R

R′

�
= kerE R̂ and p̂ = p + p′

by regularity of the interconnection. Hence Theorem 5.3(1) yields that the matrices R̂ and
�

R

R′

�
are left

equivalent. This shows that X is a block row of a unimodular matrix and therefore kerE X = R̂(B) is
controllable by virtue of Theorem 5.8(f) and Remark 5.2.
(b) ⇒ (a) follows by completing X to a unimodular matrix [XT, YT]T and defining R′ = Y R̂.
(b) ⇒ (c) Let R = BRc be factored as in Theorem 5.10, thus Bc = kerE Rc is the controllable subbe-
havior of B. Then B = Bc + B̂ is equivalent to lclm(Rc, R̂) = R (up to unimodular left factors), see
Theorem 5.3(3). But the latter follows from the right invertibility of X , since every lclm(Rc, R̂) is of the
form L = AR̂ ∈ Hp×q and a right divisor of R = XR̂ = BRc.
(c) ⇒ (d) Choose w = wc + ŵ ∈ B where wc ∈ Bc and ŵ ∈ B̂. Controllability of Bc implies the existence
of a trajectory v := wc∧0c∧T 0 ∈ Bc. As a consequence, v + ŵ = w∧0c

′∧T ŵ ∈ B, which proves (d).
(d) ⇒ (b) Let v = R̂w ∈ R̂(B) for some w ∈ B. By assumption there exists a trajectory ŵ ∈ B̂ such that
w1 := w∧0c∧T ŵ ∈ B for some T > 0 and a suitable function c defined on [0, T ). Using [12, Lem. 5.3]
one obtains R̂w1 = R̂w∧0c

′∧T1R̂ŵ ∈ R̂(B) for some T1 ≥ 0 and a function c′ (here one has to assume
that R̂ does not contain any negative powers of σ for otherwise the first concatenation would occur at a
negative time instance; but this can indeed be assumed without loss of generality, since σ is a bijection
on E). Since R̂ŵ = 0, the last part shows that every trajectory in R̂(B) can be steered to zero, which by
Remark 5.9 is equivalent to controllability of R̂(B). �

Since the image of a controllable behavior is controllable again [12, Lem. 5.4], the following additional
characterization is immediate from the above theorem. Notice that by part (b) below the term control-
lability can now be understood in a twofold way. Firstly, it describes the ability to steer trajectories
(Definition 3.11), and secondly, it expresses the achievability of all subbehaviors via regular interconnec-
tions. In other words, it guarantees the very existence of controllers.

Corollary 5.13 The following conditions on a delay–differential behavior B ⊆ Eq are equivalent.

(a) B is controllable,

(b) each subbehavior B̂ ⊆ B can be achieved via a regular interconnection from B,

(c) {0} ⊆ B can be achieved via a regular interconnection from B.

We close this section on delay–differential behaviors with commensurate delays with a brief outlook at
some

Open Problems
(1) First of all, from a control theoretic point of view it would be interesting to develop a theory for

behaviors where the trajectories have their components in more general functions spaces, say in
the space L1

loc. In [31] this has been elaborated for purely differential behaviors. While for purely
differential systems every sufficiently smooth weak solution is even a strong one [31, Thm. 2.3.11], it
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is not clear how strong and weak solutions are related for delay–differential systems. This, however,
would be a helpful information for extending the results presented in this paper to larger function
spaces. The results in [35, Sec. 7] might also be helpful in this regard. Furthermore, it is obvious
how to define a behavior in L1

loc via kernel representations over H, but it seems to be fairly difficult
to characterize controllability for these behaviors.

(2) For more general function spaces like L1
loc the properness of the associated formal transfer function

plays a fundamental role. With the methods presented in this section it is possible to explain this
relationship, if one considers inputs with components in L1

loc having support bounded to the left.
This in turn leads to a more involved notion of regular interconnection where the properness is
taken into consideration as well, the so-called regular feedback–interconnection, see [40, pag. 334] for
purely differential behaviors. The question of achievability via regular feedback–interconnections is
completely unsolved even for purely differential behaviors.

(3) For any kind of underlying function space the concept of stabilizability remains to be investigated.
Only partial results are available in this regard.

References
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