MA111: Contemporary mathematics

Jack Schmidt
University of Kentucky

September 23, 2011

Schedule:

- Participation quiz on BB should be done today (and take like 30 seconds)
- HW 10.6 EZ is due Today, Sep 21st, 2011.
- Exam 2 is Monday, Oct 3rd, during class.

Today we will look at borrowing money for several years, 10.6, amortized loans.

10.6 EZ: Review of short installment loans

- Two key ideas:
- Payments not only lower the debt, they lower the interest too Payments basically earn interest
- Moving from future value to present value is just dividing by $1+p$ Fancy formula is going to call it multiplying by $q=\frac{1}{1+p}$
- With just a few installments, we calculate by hand
- With 20 or 30 or 360 , we need a formula

10.6 EZ: Pirates

- You owe the Beard brothers $\$ 1000$ plus 2% interest per month, compounded monthly
- You agree to pay them $\$ 200$ every month until the debt is paid
- How much do you owe after one payment?

10.6 EZ: Pirates

- You owe the Beard brothers $\$ 1000$ plus 2% interest per month, compounded monthly
- You agree to pay them $\$ 200$ every month until the debt is paid
- How much do you owe after one payment? \$820

$$
\$ 1000 \xrightarrow{\text { plus } 2 \%} \$ 1000(1.02)=\$ 1020 \xrightarrow{\text { minus } \$ 200}=\$ 820
$$

10.6 EZ: Pirates

- You owe the Beard brothers $\$ 1000$ plus 2% interest per month, compounded monthly
- You agree to pay them $\$ 200$ every month until the debt is paid
- How much do you owe after one payment? \$820

$$
\$ 1000 \xrightarrow{\text { plus } 2 \%} \$ 1000(1.02)=\$ 1020 \xrightarrow{\text { minus } \$ 200}=\$ 820
$$

- How long does it take to pay it off?

10.6 EZ: Pirates

- You owe the Beard brothers $\$ 1000$ plus 2% interest per month, compounded monthly
- You agree to pay them $\$ 200$ every month until the debt is paid
- How much do you owe after one payment? \$820

$$
\$ 1000 \xrightarrow{\text { plus } 2 \%} \$ 1000(1.02)=\$ 1020 \xrightarrow{\text { minus } \$ 200}=\$ 820
$$

- How long does it take to pay it off? almost 6 months

\$	plus 2\% minus \$200
\$ 820.00	$\xrightarrow{\text { plus } 2 \% \text { minus \$200 }}$
\$ 636.40	plus 2\% minus \$200
\$ 449.13	$\xrightarrow{\text { plus } 2 \% \text { minus } \$ 200}$
\$ 258.11	$\xrightarrow{\text { plus } 2 \% \text { minus } \$ 200}$
\$ 63.27	$\xrightarrow{\text { plus } 2 \% \text { minus } \$ 64.54}$
\$ 0.00	

10.6 EZ: The very short mortgage / credit card

- You get a house loan for your hermit crab 3 annual payments of $\$ 1$ at 5\% APR compounded annually
- How much did Hermes's house cost?

10.6 EZ: The very short mortgage / credit card

- You get a house loan for your hermit crab 3 annual payments of $\$ 1$ at 5% APR compounded annually
- How much did Hermes's house cost? \$2.72

$$
\begin{gathered}
\$ 1 /(1.05)+\$ 1 /(1.05)^{2}+\$ 1 /(1.05)^{3}=\$ 2.72 \\
q+q^{2}+q^{3}=q \frac{1-q^{3}}{1-q}
\end{gathered}
$$

10.6 EZ: The very short mortgage / credit card

- You get a house loan for your hermit crab 3 annual payments of $\$ 1$ at 5\% APR compounded annually
- How much did Hermes's house cost? \$2.72

$$
\begin{gathered}
\$ 1 /(1.05)+\$ 1 /(1.05)^{2}+\$ 1 /(1.05)^{3}=\$ 2.72 \\
q+q^{2}+q^{3}=q \frac{1-q^{3}}{1-q}
\end{gathered}
$$

- You decide to put the hamster hut on your credit card 3 annual payments of $\$ 1.61$ at 35% APR compounded annually
- How much did Hamish's cardboard paradise cost?

10.6 EZ: The very short mortgage / credit card

- You get a house loan for your hermit crab 3 annual payments of $\$ 1$ at 5\% APR compounded annually
- How much did Hermes's house cost? \$2.72

$$
\begin{gathered}
\$ 1 /(1.05)+\$ 1 /(1.05)^{2}+\$ 1 /(1.05)^{3}=\$ 2.72 \\
q+q^{2}+q^{3}=q \frac{1-q^{3}}{1-q}
\end{gathered}
$$

- You decide to put the hamster hut on your credit card 3 annual payments of $\$ 1.61$ at 35% APR compounded annually
- How much did Hamish's cardboard paradise cost? \$2.73

$$
\begin{gathered}
\$ 1.61 /(1.35)+\$ 1.61 /(1.35)^{2}+\$ 1.61 /(1.35)^{3}=\$ 2.73 \\
M q+M q^{2}+M q^{3}=M q \frac{1-q^{3}}{1-q}
\end{gathered}
$$

10.4: Adding up numbers!

- A frog jumps halfway to the end of the log:

$$
d=\frac{1}{2}
$$

- He does it again, but literally:

$$
d=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

10.4: Adding up numbers!

- A frog jumps halfway to the end of the log:

$$
d=\frac{1}{2}
$$

- He does it again, but literally:

$$
d=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

- He does it again, but literally:

$$
d=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}
$$

10.4: Adding up numbers!

- A frog jumps halfway to the end of the log:

$$
d=\frac{1}{2}
$$

- He does it again, but literally:

$$
d=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}
$$

- He does it again, but literally:

$$
d=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}
$$

- If he keeps doing this, how far does he get? $\frac{15}{16}, \frac{31}{32}, \ldots, 1$?

10.4: Frog math

- Suppose Robin (the frog) is jumping too, but only "half" as far
- Robin jumps a quarter of the way, and then a quarter of that, and then a quarter of that, etc.
- How far does Robin make it?
- (Prepare to present your answer at the board)
- What if he jumped 8 times? Just add them up...

$$
q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}
$$

- What if he jumped 8 times? Just add them up...

$$
q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}
$$

- Kind of a pain. Crazy trick: multiply by $(1-q)$, take the original, and subtract q times the original from it:

$$
\begin{aligned}
& q^{1}+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8} \\
&- q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-q^{9} \\
& \hline
\end{aligned}
$$

- What if he jumped 8 times? Just add them up...

$$
q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}
$$

- Kind of a pain. Crazy trick: multiply by $(1-q)$, take the original, and subtract q times the original from it:

$$
\begin{aligned}
& q^{1}+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8} \\
&- q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-q^{9} \\
& \hline
\end{aligned}
$$

- Easier if we shifted it over:

$$
\begin{aligned}
& q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8} \\
&-q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-q^{9} \\
& \hline q-q^{9}
\end{aligned}
$$

- What if he jumped 8 times? Just add them up...

$$
q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}
$$

- Kind of a pain. Crazy trick: multiply by $(1-q)$, take the original, and subtract q times the original from it:

$$
\begin{array}{r}
q^{1}+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8} \\
-q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-q^{9} \\
\hline
\end{array}
$$

- Easier if we shifted it over:

$q+q^{2}+q^{3}+q^{4}+q^{5}+q^{6}+q^{7}+q^{8}$
$-q^{2}-q^{3}-q^{4}-q^{5}-q^{6}-q^{7}-q^{8}-q^{9}$
q

- $(1-q)\left(q+q^{2}+\cdots+q^{8}\right)=q-q^{9}=q\left(1-q^{8}\right)$

$$
q+q^{2}+\cdots+q^{8}=q \frac{1-q^{8}}{1-q}
$$

10.4: Factoring froggies

- Difference of squares: $1-q^{2}=(1-q)(1+q)$
- Difference of cubes: $1-q^{3}=(1-q)\left(1+q+q^{2}\right)$
- Difference of fourths: $1-q^{4}=(1-q)\left(1+q+q^{2}+q^{3}\right)$
- Difference of fifths: $1-q^{5}=(1-q)\left(1+q+q^{2}+q^{3}+q^{4}\right)$
- Difference of 360ths: $1-q^{360}=(1-q)\left(1+q+\cdots+q^{358}+q^{359}\right)$

10.6: The formula

- Difference of 360 ths

$$
1-q^{360}=(1-q)\left(1+q+\cdots+q^{358}+q^{359}\right)
$$

- Multiply by q

$$
q\left(1-q^{360}\right)=(1-q)\left(q+q^{2}+\cdots+q^{359}+q^{360}\right)
$$

- Divide by $1-q$

$$
q \frac{1-q^{360}}{1-q}=q+q^{2}+\cdots+q^{359}+q^{360}
$$

- Multiply by M

$$
M q \frac{1-q^{360}}{1-q}=M q+M q^{2}+\cdots+M q^{360}
$$

10.6: Using the formula

- For some reason you charge $\$ 5000$ on your credit card
- Realizing the error of your mistake, you swear never to spend on that card again
- You make monthly payments of $\$ 500$ on it, with 35% APR compounded monthly
- How does that work out for you? $\$ 5000 / \$ 500=10$, should be 10 months, eh?

10.6: Using the formula

- For some reason you charge $\$ 5000$ on your credit card
- Realizing the error of your mistake, you swear never to spend on that card again
- You make monthly payments of $\$ 500$ on it, with 35% APR compounded monthly
- How does that work out for you? $\$ 5000 / \$ 500=10$, should be 10 months, eh?
- One way to see: how much of a loan would a year of paying it back have covered?

$$
\begin{aligned}
M & =\$ 500 \\
q & =1 /(1+0.35 / 12) \\
T & =12 \\
P & =M q \frac{1-q^{12}}{1-q}=\$ 5001.85
\end{aligned}
$$

10.6: Using the formula

- For some reason you charge $\$ 5000$ on your credit card
- Realizing the error of your mistake, you swear never to spend on that card again
- You make monthly payments of $\$ 500$ on it, with 35% APR compounded monthly
- How does that work out for you? $\$ 5000 / \$ 500=10$, should be 10 months, eh?
- One way to see: how much of a loan would a year of paying it back have covered?

$$
\begin{aligned}
M & =\$ 500 \\
q & =1 /(1+0.35 / 12) \\
T & =12 \\
P & =M q \frac{1-q^{12}}{1-q}=\$ 5001.85
\end{aligned}
$$

- Takes a year, not 10 months. Where did the extra $\$ 1000$ go?

10.6: It's a false economy

- Why not save yourself money by making a smaller payment? $\$ 200$ should do it.
- $\$ 5000 / \$ 200=25$ months, just a little over 2 years, no biggy
- How much of a loan would 3 years and 9 months of payments cover?

$$
\begin{aligned}
M & =\$ 200 \\
q & =1 /(1+0.35 / 12) \\
T & =45 \\
P & =M q \frac{1-q^{45}}{1-q}=\$ 4976.59
\end{aligned}
$$

10.6: It's a false economy

- Why not save yourself money by making a smaller payment? $\$ 200$ should do it.
- $\$ 5000 / \$ 200=25$ months, just a little over 2 years, no biggy
- How much of a loan would 3 years and 9 months of payments cover?

$$
\begin{aligned}
M & =\$ 200 \\
q & =1 /(1+0.35 / 12) \\
T & =45 \\
P & =M q \frac{1-q^{45}}{1-q}=\$ 4976.59
\end{aligned}
$$

- Takes over 45 months to pay it back, where did the extra $(20$ months $)(\$ 200$ per month $)=\$ 4000$ go?

Homework

- Calculations using formula: installment loans (what happens), installment loans (calculating the payment)
- Participation (15\%): There is a quiz on blackboard, under Assignments. Should do it today. Due by Sunday.
- Read section 10.6 of the textbook. Skim 10.4-10.5.
- Online homework (30\%):
- HW 10.6 EZ is due Today.
- HW 10.6 is due Monday.

