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Semidirect products are a very useful rudiment of finite group theory, but the diffi-
culties in working with them are often both under- and over-estimated. This document
attempts to handle some of these issues.

A motivating example: describe the semi-direct products of S3 by Ss3. In this case
we get 3 conjugacy classes of actions f : S5 — Aut(Ss3), but when we look more closely
at the result semi-direct products, they all turn out to be isomorphic to S3 x S3. Why
is this?

The first section tries to explain this, but first we fix notation and definitions.

DEFINITION 1. If @, N are groups and f : @ — Aut(N) is a homomorphism, then the
group @ x ¢ N, the external semidirect product of ) acting on IV, is defined on the
set @ X N using the rule (¢,n)-(r,m) = (qr, n(rf)m) where n("’) is also written f(r)(n).
Note that (1,1) is the identity element, and (¢, k)~ = (¢~ !, ) where 29 = k1.

The subgroups @ x 1 = {(q,1) : ¢ € @} and 1 x N = {(1,n) : n € N} have the nice
property that 1 x N is normal, (@ x 1)(I1x N)=Q x N and (@ x 1)N (1 x N) = 1.

DEFINITION 2. Suppose G is a group, with normal subgroup N <G and subgroup @Q < G
with G = QN and QN N = 1. Then G is called the internal semidirect product of
Q@ acting on N. The action is the homomorphism f : @ — Aut(N) : ¢ — (n — n?).
Here ¢ is also written as n~'qn.

The following calculation is routine and shows the difference between internal and
external semidirect products is just a matter of omitting parentheses.

PrOPOSITION 3. If G is an internal semidirect product of @ and N with action f,
then each element of G has a unique expression as gn for ¢ € @Q and n € N and there
is an isomorphism from G to @ x¢ N given by gn — (g,n). Conversely, the external
semidirect product is an internal semidirect product of (@ x 1) acting on (1 x N) with
action f: (Q x 1) — Aut(1 x N) : (¢g,1) = ((1,n) (1,an), which upon identifying
Q with @ x 1 and N with 1 x N just becomes f.

1 Complements to a normal subgroup

If G is an internal semidirect product of @ acting on N, can it also be an internal
semidirect product of R acting on N? Can we find all the R? How do the actions of @
and R relate?

DEFINITION 4. If N < G is a normal subgroup, then a subgroup @ < G is called a
complement to N in G iff G = QN and QNN = 1. A normal subgroup is called
complemented if it has a complement.

We first observe that any conjugate of a complement is a complement.

PROPOSITION 5. If () is a complement to N in G, then @9 is also a complement to NV
in G. The action of Q7 is @ x Inn(N)-conjugate to the action of Q.

© 2013 Jack Schmidt



SEMIDIRECT PRODUCTS

Proof. This follows form the fact that conjugation is an automorphism fixing N: G =
GI=(QN)? =QINY=QINand 1 =19 = (QNN)? = QINN? = Q9N N. Note that
g = gn and Q = Q7 so up to Q-conjugacy, the action of Q and Q7 are the same. The
action of Q" is then f(¢")(x) = gn = ((x”fl)q)", so f(¢™) is the conjugate of f(q)
by the inner automorphis of N induced by n. O

What does Q9 look like? This is especially clear in the external case:

PROPOSITION 6. (Q x 1)(@™) = {(r,[r,n]) : r € Q} where [r,n] = (n™)" - n externally

and [r,n] = r~'n~!rn internally.

Proof. Easy calculation. O

Notice how for each g € @, the conjugate of @™ of @ has a unique element of the
form (q,y), with y = [¢,n]. In other words, there is a function d,, : Q@ — N : ¢ — [g,n]
and Q"™ = {(q,0,(q)) : ¢ € Q} is the graph of that function.

DEFINITION 7. The graph of a function ¢ : @ — N is the set {(¢q,d(¢))} C @ x N.
In fact we can prove that every conjugate is the graph of a function!

PROPOSITION 8. If R is a complement to (1 x N) in @ x N, then R is the graph of a
function § : Q — N.

Proof. Since (g,1) € Q@ x N = R(1 x N) there must be some (¢,n) € R and (1,n"1) €
1 x N such that (¢,1) = (¢,n) - (1,n~1). If (¢,n) and (g, m) are both in R, then
(@m) am) = (@ ) ) (@m) = (Lnm) € RO (1 N) =1,

so m = n. This means that for every ¢ € @, there is a uniquely defined §(¢) € N such
that ¢d(q) € R. O

Does every function work? Well conjugates only come from functions of the form
q — [g,n]. These functions have a special name and are part of a larger collection
of functions called derivations (hence the name derived subgroup) or crossed homo-
morphisms, since they satisfy a twisted or crossed version of the defining property of
homomorphisms.

DEFINITION 9. An f-crossed homomorphism from @ to N, where f : Q@ — Aut(N),
is a function ¢ : Q — N with the property

"
3(qr) = 6(g)\"8(r).
A principal f-crossed homomorphism is an f-crossed homomorphism of the form
5
qr (nil)(q 'n.
A quick calculation confirms:

PRrROPOSITION 10. A principal f-crossed homomorphism is an f-crossed homomor-
phism.

And we come to the main theoretical result of this section:
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PropPoSITION 11. The complements of 1 X IV in @ x ¢ N are exactly the graphs of the
f-crossed homomorphisms from @ to V.

XXX: Include the action here?

Proof. The graph R a function from @ to IV is always a sort of complement in that
R(I1x N)=Q@Q x N and RN (1 x N) =1, as the previous proof has shown. The main
trouble is whether R is in fact a subgroup. In other words, which functions have graphs
that are subgroups? Well we just need (q,0(q)) - (r,0(r)) = (gr, 5(q)’"f5(r)) to be of the
form (s,d(s)). Since s = gr, we get the needed equality d(gr) = 6(q)(7'f)(5(r), and
must be a f-crossed homomorphism in order for its graph to be a subgroup. Conversely
of course the same calculations show that the graph of an f-crossed homomorphism is
a subgroup. O

Now we use this to give a suprising family of examples.

EXAMPLE 12. Suppose @, N are groups and f : @ — N is a homomorphism. Define
f:Q —= Aut(N) : ¢ —» (n — n(qf)), so that f(q) is the inner automorphism of N
defined by f(¢). Then @ x; N =@ x N.

Proof. Let G = Q@ x N = @Q x4 N where t : @ — Aut(N) : ¢ — (n — n) is the

trivial action. A t-crossed homomorphism is just a homomorphism, so the graph of f

is a complement to 1 x; N. But the graph of f is (¢, f(¢)) and the action on (1,x) is
-1

(¢, f(@) " (L,2)(q, f(q) = (ql(f(q)l)q >’(1,x)~(q,f(q)) = (¢7'q, f@) zf(q) =

(1, a:qf), so the action of the graph R of f on 1 x N is just f. By the internal-external
equivalence, @ Xy N =R(1x; N)2 Rx; N =Q x; N. O

In particular, if @ = N = S3, then Aut(N) = Inn(N) & N and every action f
comes from some f, so every semidirect product of S3 by S5 is isomorphic to the direct
product.
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