4.2a: Null spaces

MA322-001 Feb 26 Worksheet
Define $\operatorname{Nul}(A)$ to be the solution set $\{\vec{x}: A \vec{x}=\overrightarrow{0}\}$ to the homogeneous equation $A \vec{x}=0$. It turns out that $\operatorname{Nul}(A)$ is always a subspace, no matter which matrix A is.

Verify the three part test to be a subspace here:

It is not to hard to test if a vector \vec{v} is in $\operatorname{Nul}(A)$: just multiply it by A and check that you get $\overrightarrow{0}$. On the other hand, how do you find lots of vectors in $\operatorname{Nul}(A) ? \operatorname{RREF}$!
Explain how to get all vectors in $\operatorname{Nul}(A)$ for a matrix A that is row equivalent to this matrix B in row echelon form:
$A \xrightarrow{\text { Row ops }} B=\left[\begin{array}{rrrrrrrr|l}1 & 2 & 0 & 3 & 4 & 0 & 5 & 6 & 0 \\ 0 & 0 & 1 & 7 & 8 & 0 & 9 & 10 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 11 & 12 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

How is column dependence related?

4.2b: Column spaces

MA322-001 Feb 26 Worksheet
Define $\operatorname{Col}(A)$ to be the span of the columns of A. It turns out this is always a subspace, no matter which matrix A is.

Verify the three part test to be a subspace here:

It is easy to find some elements of $\operatorname{Col}(A)$ (the columns of A, any linear combination of them). However, given a vector \vec{b}, it can be hard to decide if \vec{b} is in $\operatorname{Col}(A)$. How do we figure it out? RREF!
Explain how to test if a vector \vec{b} all vectors in $\operatorname{Col}(A)$ for a matrix A that is row equivalent to this matrix B in row echelon form:
$A \xrightarrow[R_{3}+R_{1}]{R_{2}-3 R_{1}} \ldots \xrightarrow[R_{1}-R_{4}]{R_{4}-R 3} B=\left[\begin{array}{rrrrrrrr|l}1 & 2 & 0 & 3 & 4 & 0 & 5 & 6 & 0 \\ 0 & 0 & 1 & 7 & 8 & 0 & 9 & 10 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 11 & 12 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

How is this related to row dependence?

Matrices are convenient for computers and spreadsheets, but sometimes there are much clearer ways of describing a linear transformation.
A linear transformation is a function $T: V \rightarrow W$ between two vector spaces V and W (so $T(\vec{v})=\vec{w}$) satisfying the following two axioms:
(Additive) $T\left(\overrightarrow{v_{1}}+\overrightarrow{v_{2}}\right)=T\left(\overrightarrow{v_{1}}\right)+T\left(\overrightarrow{v_{2}}\right)$, and (Multiple) $T(c \vec{v})=c T(\vec{v})$
Let V be the vector space of polynomials and let T be the derivative. Is T a linear transformation? From where to where? Show the two part test:

The null space of T is all \vec{v} so that $T(\vec{v})=\overrightarrow{0}$. If T is given by a matrix A, then the null space of T is just $\operatorname{Nul}(A)$. What is the null space of T when T is the derivative operator?

The image of T is all \vec{w} so that there is some \vec{v} with $T(\vec{v})=\vec{w}$. If T is given by a matrix A, the image of T is just $\operatorname{Col}(A)$. What is the image of T when T is the derivative operator?

MA322-001 Feb 26 Quiz
Name: \qquad
4.1 (HW4.1\#2) V is the vector space of all vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$, but W is only those vectors with $x y \geq 0$. For each of the three tests, check W :
(a) Is $\overrightarrow{0}$ in W ?
(b) If \vec{v} in W and c is a number, is $c \vec{v}$ in W ?
(c) if \vec{v} and \vec{u} are both in W, is $\vec{v}+\vec{u}$ in W ?
4.2 (HW4.1\#6) V is the vector space of all polynomials, $p(t) . W$ is only those vectors of the form $p(t)=a+t^{2}$ for numbers a. Repeat the last question (parts a,b,c).
4.3 (HW4.1\#19) V is the vector space of all rel valued functions, $f(t)$. W is only those that can be written as $f(t)=c_{1} \cos (\pi t)+c_{2} \sin (\pi t)$ for numbers c_{1} and c_{2}. Repeat the last question (parts a,b,c)

I'll also look at your answers on the back (the derivative is linear, its null space is blank, its image is blank).

