\qquad

1. Spectral decomposition. Explain your answers. The following vectors are used this page:
$\overrightarrow{\mathbf{u}}=\left[\begin{array}{r}1 / 2 \\ -1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right], \overrightarrow{\mathbf{v}}=\left[\begin{array}{r}1 / 2 \\ 1 / 2 \\ -1 / 2 \\ -1 / 2\end{array}\right], \overrightarrow{\mathbf{w}}=\left[\begin{array}{r}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right]$.
(a) Compute $A=\overrightarrow{\mathbf{u}} \cdot 2 \cdot \overrightarrow{\mathbf{u}}^{T}+\overrightarrow{\mathbf{v}} \cdot 4 \cdot \overrightarrow{\mathbf{v}}^{T}+\overrightarrow{\mathbf{w}} \cdot 6 \cdot \overrightarrow{\mathbf{w}}^{T}$
(b) Find 3 linearly independent eigenpairs of A.

Bonus: Find a 4th linearly independent eigenpair (or just explain how).
2. Quadratic forms
(a) Compute a matrix B so that:

$$
Q(\overrightarrow{\mathbf{x}})=\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right] B\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=2\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{3}\right)^{2}+\left(x_{2}+x_{4}\right)^{2}+2\left(x_{3}+x_{4}\right)^{2}
$$

(b) Suppose B had eigenpairs $(0, \overrightarrow{\mathbf{t}}),(2, \overrightarrow{\mathbf{u}}),(4, \overrightarrow{\mathbf{v}}),(6, \overrightarrow{\mathbf{w}})$. Explain how to find the values of x_{i} so that $Q(\overrightarrow{\mathbf{x}})$ is maximized subject to $\|\overrightarrow{\mathbf{x}}\|=\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}}=1$.

Bonus: Actually find the values of x_{i}.
3. Diagonal SVD. Let $C=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 0\end{array}\right]$ and $\overrightarrow{\mathbf{b}}=\left[\begin{array}{c}f \\ g \\ h \\ i\end{array}\right]$
(a) Find an expression for $\overrightarrow{\mathbf{x}}$ (in terms of f, g, h, i) so that $\|C \overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{b}}\|$ is as small as possible.
(b) Find a value for $\overrightarrow{\mathbf{x}}$ so that $\|C \overrightarrow{\mathbf{x}}\|$ is as large as possible subject to $\|\overrightarrow{\mathbf{x}}\| \leq 1$.
4. Let $\overrightarrow{\mathbf{u}}_{1}=\left[\begin{array}{r}0.50 \\ -0.50 \\ -0.50 \\ 0.50\end{array}\right], \overrightarrow{\mathbf{u}}_{2}=\left[\begin{array}{r}0.50 \\ -0.50 \\ 0.50 \\ -0.50\end{array}\right], \overrightarrow{\mathbf{v}}_{1}=\left[\begin{array}{r}0.36 \\ -0.48 \\ -0.80\end{array}\right]$, and $\overrightarrow{\mathbf{v}}_{2}=\left[\begin{array}{r}-0.48 \\ 0.64 \\ -0.60\end{array}\right]$.

Set $D=\overrightarrow{\mathbf{u}}_{1} \cdot 10 \cdot \overrightarrow{\mathbf{v}}_{1}^{T}+\overrightarrow{\mathbf{u}}_{2} \cdot 15 \cdot \overrightarrow{\mathbf{v}}_{2}^{T}=\left[\begin{array}{rrr}-1.80 & 2.40 & -8.50 \\ 1.80 & -2.40 & 8.50 \\ -5.40 & 7.20 & -0.50 \\ 5.40 & -7.20 & 0.50\end{array}\right]$ and $\overrightarrow{\mathbf{d}}=\overrightarrow{\mathbf{u}}_{1} \cdot 2+\overrightarrow{\mathbf{u}}_{2} \cdot 4=\left[\begin{array}{r}3 \\ -3 \\ 1 \\ -1\end{array}\right]$.
(a) Find $\overrightarrow{\mathbf{x}}$ so that $\|D \overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{d}}\|$ is as small as possible.
(b) Find $\overrightarrow{\mathbf{x}}$ so that $\|D \overrightarrow{\mathbf{x}}\|$ is as large as possible, subject to $\|\overrightarrow{\mathbf{x}}\| \leq 1$.

