1.8: Matrices are functions

MA322-007 Feb 10 Worksheet
An $R \times C$ matrix A with R rows and C columns is also a function whose domain is vectors $\overrightarrow{\mathbf{c}}, \overrightarrow{\mathbf{x}}$ of size C and whose codomain is vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{C}, \overrightarrow{\mathbf{b}}$ of size R. For example $A \overrightarrow{\mathbf{c}}=$ $c_{1} \overrightarrow{\mathbf{v}}_{1}+c_{2} \overrightarrow{\mathbf{v}}_{2}+\ldots+c_{C} \overrightarrow{\mathbf{v}}_{C}$ expresses the output of $A(\overrightarrow{\mathbf{c}})$ as a linear combination of the vectors $\overrightarrow{\mathbf{v}}_{i}$ that are the columns of A.
Not all functions from vectors to vectors are matrices: only the ones that satisfy the two axioms: $A(r \overrightarrow{\mathbf{c}})=r \cdot A(\overrightarrow{\mathbf{c}})$ and $A(\overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{y}})=A(\overrightarrow{\mathbf{x}})+A(\overrightarrow{\mathbf{y}})$ for all vectors $\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{y}}$ in the domain and all scalars r.

1.9: Blackbox matrix

The vectors $\overrightarrow{\mathbf{e}}_{i}$ that have a 1 in the i th position and a 0 elsewhere are called the standard basis vectors. If $A\left(\overrightarrow{\mathbf{e}}_{i}\right)=\overrightarrow{\mathbf{v}}_{i}$, then $\overrightarrow{\mathbf{v}}_{i}$ is exactly the i th column of A. In order to find the columns of A when A is only described in words, just calculate $A\left(\overrightarrow{\mathbf{e}}_{i}\right)$, the image of each standard basis vector under the action of A. By the two matrix axioms, if $\overrightarrow{\mathbf{x}}=x_{1} \overrightarrow{\mathbf{e}}_{1}+\ldots+$ $x_{n} \overrightarrow{\mathbf{e}}_{n}$, then $A(\overrightarrow{\mathbf{x}})=x_{1} \overrightarrow{\mathbf{v}}_{1}+\ldots+x_{n} \overrightarrow{\mathbf{v}}_{n}$.

2.1: Matrix operations

If we can take linear combinations of elements of the codomains, we can take linear combinations of the functions. If A, B are matrices of the same size and r is a scalar, then define $A+B$ to be the matrix of the same size that takes $\overrightarrow{\mathbf{x}}$ to $A(\overrightarrow{\mathbf{x}})+B(\overrightarrow{\mathbf{x}})$ and $r A$ to be the matrix of the same size that takes $\overrightarrow{\mathbf{x}}$ to $r(A(\overrightarrow{\mathbf{x}}))$. We can check that this makes $A+B$ and $r A$ into matrices.
Example 1,2: $A=\left[\begin{array}{rrr}4 & 0 & 5 \\ -1 & 3 & 2\end{array}\right], B=\left[\begin{array}{lll}1 & 1 & 1 \\ 3 & 5 & 7\end{array}\right]$, and $C=\left[\begin{array}{rr}2 & -3 \\ 0 & 1\end{array}\right]$.
$A+B$
$2 B$
$A-2 B$

2.1.b: Matrices are vectors

We've seen different types of vectors. 2D vectors. 3D vectors. Chemical vectors. Each type of vector obeys the same basic rules: you can add and subtract vectors and multiply them by numbers. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ are vectors of the same type and r, s are numbers, then (1) $(r+s) \overrightarrow{\mathbf{a}}=r \overrightarrow{\mathbf{a}}+s \overrightarrow{\mathbf{a}},(2) r(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})=r \overrightarrow{\mathbf{a}}+r \overrightarrow{\mathbf{b}},(3) 1 \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{a}},(4) r(s \overrightarrow{\mathbf{a}})=(r s) \overrightarrow{\mathbf{a}},(5) 0 \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}}$, and (6) $\overrightarrow{\mathbf{a}}+(\overrightarrow{\mathbf{b}}+\overrightarrow{\mathbf{c}})=(\overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{b}})+\overrightarrow{\mathbf{c}}$. We abbreviate $0 \overrightarrow{\mathbf{a}}$ as $\overrightarrow{\mathbf{0}}$ and $(-1) \overrightarrow{\mathbf{a}}$ as $-\overrightarrow{\mathbf{a}}$, and we write $\overrightarrow{\mathbf{b}}+(-1) \overrightarrow{\mathbf{a}}$ as $\overrightarrow{\mathbf{b}}-\overrightarrow{\mathbf{a}}$.
Now we have a new type of vector for every pair of positive integers R, C : the $R \times C$ matrices are vectors where we can form linear combinations.
2.1.c: Matrix multiplication We define the composition of two matrices $A B$ by the rule $(A B) \overrightarrow{\mathbf{x}}=A(B \overrightarrow{\mathbf{x}})$. This requires that codomain of B be the domain of A, that is, if A is $m \times n$ and B is $n^{\prime} \times p$, then we must have $n=n^{\prime}$.
Suppose B has columns $\overrightarrow{\mathbf{b}}_{1}, \overrightarrow{\mathbf{b}}_{2}, \ldots, \overrightarrow{\mathbf{b}}_{p}$ all of which are in the domain of A. Then $A B$ has columns $A \overrightarrow{\mathbf{b}}_{1}, A \overrightarrow{\mathbf{b}}_{2}, \ldots, A \overrightarrow{\mathbf{b}}_{p}$. In particular, $A B$ has the same number of columns as B does.

$$
\text { If } B=\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
\overrightarrow{\mathbf{b}}_{1} & \overrightarrow{\mathbf{b}}_{2} & \ldots & \overrightarrow{\mathbf{b}}_{p} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right] \text {, then } A B=\left[\begin{array}{cccc}
\uparrow & \uparrow & & \uparrow \\
A \overrightarrow{\mathbf{b}}_{1} & A \overrightarrow{\mathbf{b}}_{2} & \ldots & A \overrightarrow{\mathbf{b}}_{p} \\
\downarrow & \downarrow & & \downarrow
\end{array}\right]
$$

If $\overrightarrow{\mathbf{b}}_{1}=\left[\begin{array}{c}b_{11} \\ b_{12} \\ \vdots \\ b_{1 n}\end{array}\right]$ and $A=\left[\begin{array}{cccc}\uparrow & \uparrow & & \uparrow \\ \overrightarrow{\mathbf{a}}_{1} & \overrightarrow{\mathbf{a}}_{2} & \ldots & \overrightarrow{\mathbf{a}}_{n} \\ \downarrow & \downarrow & & \downarrow\end{array}\right]$, then $A \overrightarrow{\mathbf{b}}_{1}=b_{11} \overrightarrow{\mathbf{a}}_{1}+b_{12} \overrightarrow{\mathbf{a}}_{2}+\ldots+b_{1 n} \overrightarrow{\mathbf{a}}_{n}$.
These satisfy the additional axioms similar to numbers (most of which follow from being functions that output vectors): $A(B C)=(A B) C,(A+B) C=A C+B C, A(B+C)=$ $A B+A C, x(A B)=(x A) B=A(x B)$. Additionally the matrix I_{m} consisting of the m different m-D standard basis vectors acts like $1, I_{m} A=A=A I_{n}$ if A is $m \times n$.
Example 3: Let $A=\left[\begin{array}{rr}2 & 3 \\ 1 & -5\end{array}\right], B=\left[\begin{array}{rrr}4 & 3 & 6 \\ 1 & -2 & 3\end{array}\right]$ $A B$

BA

Example 7: Let $A=\left[\begin{array}{rr}5 & 1 \\ 3 & -2\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 4 & 3\end{array}\right]$
$A B$
BA

See exercise 10 and 12 for more extreme examples.
2.1.d: Square matrices See exercise 11 for an important square example. Also I_{n}.
2.1.e: Transpose See exercise 27 for an important construction.
\qquad
HW1.9 \#1 If $A\left(\overrightarrow{\mathbf{e}}_{1}\right)=(3,1,3,1)$ and $A\left(\overrightarrow{\mathbf{e}}_{2}\right)=(-5,2,0,0)$, then what is the matrix of A, assuming A is a linear transformation $A: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ and $\overrightarrow{\mathbf{e}}_{1}=(1,0)$ and $\overrightarrow{\mathbf{e}}_{2}=(0,1)$.

HW1.9 \#15 Find the matrix of A where $A(x, y, z)=(2 x-4 y, x-z,-y+3 z)$ and $A: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$.

HW1.9 \#17 Find the matrix of A where $A(a, b, c, d)=(a+2 b, 0,2 b+d, b-d)$ and $A: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$.
2.1 (\#11a) Find the matrix of D where $D(x, y, z)=(5 x, 3 y, 2 z)$.
2.1 (\#11b) For $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$, find the matrix of $D A$.

