An inner product is an operation that takes two vectors $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ from the same vector space V and returns a number $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$.
It should satisfy the following properties for vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$ in V and a scalar number c :

- $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$
- $(\overrightarrow{\mathbf{u}}+\overrightarrow{\mathbf{v}}) \cdot \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}+\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}}$
- $(c \overrightarrow{\mathbf{u}}) \cdot \overrightarrow{\mathbf{v}}=c(\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{u}} \cdot(c \overrightarrow{\mathbf{v}})$

It follows from these properties that for any vector $\overrightarrow{\mathbf{u}}$, the transformation $\overrightarrow{\mathbf{u}}^{T}: V \rightarrow \mathbb{R}: \overrightarrow{\mathbf{v}} \mapsto$ $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}$ is a linear transformation, so $\overrightarrow{\mathbf{u}}^{T}$ must be a matrix.
If $V=\mathbb{R}^{n}$, then the standard inner product takes $\overrightarrow{\mathbf{u}}^{T}$ to be the $1 \times n$ matrix whose entries are the same as $\overrightarrow{\mathbf{u}}$, just as a row instead of a column. So if $\overrightarrow{\mathbf{u}}=\left[\begin{array}{r}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\overrightarrow{\mathbf{v}}=\left[\begin{array}{r}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$, then

$$
\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}}^{T} \overrightarrow{\mathbf{v}}=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{r}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

If V consists of functions f so that $|f|^{2}$ is integrable, then its standard inner product is actually the integral: $\overrightarrow{\mathbf{f}} \cdot \overrightarrow{\mathbf{g}}=\int f(x) g(x) \mathrm{d} x$. Electrical will use this a lot (Fourier series).
If V is space-time coordinates, then $\left[\begin{array}{c}x \\ y \\ z \\ t\end{array}\right]^{T}=\left[\begin{array}{llll}x & y & z & -t\end{array}\right]$ so that
$\overrightarrow{\mathbf{v}}_{1} \cdot \overrightarrow{\mathbf{v}}_{2}=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}-t_{1} t_{2}$
We'll be sticking with the standard inner product which has the following two important features (symmetric, definite):

- $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{u}}$
- $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{u}}>0$ unless $\overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{0}}$

For such a nice inner product, we can also define the length of a vector as $\|\overrightarrow{\mathbf{v}}\|=\sqrt{\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{v}}}$, the distance between two vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}$ as the length of $\overrightarrow{\mathbf{u}}-\overrightarrow{\mathbf{v}}$, and the angle between them as the angle θ so that $\cos (\theta)=\frac{\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{u}} \cdot\| \overrightarrow{\mathbf{v}} \|}$.
In general, we say that $\overrightarrow{\mathbf{u}}$ and $\overrightarrow{\mathbf{v}}$ are orthogonal if $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=0$. This basically means that $\theta= \pm 90^{\circ}$ (only exception being when $\|\overrightarrow{\mathbf{u}}\|$ or $\|\overrightarrow{\mathbf{v}}\|$ is 0).
A unit length vector is a vector $\overrightarrow{\mathbf{v}}$ of length $1=\|\overrightarrow{\mathbf{v}}\|$.
HW6.1 \# 1,3,5,7,9,11

The most interesting things happen when we have a bunch of unit length vectors that are all orthogonal to each other. For example, let's look at this basis of \mathbb{R}^{4} :

$$
\overrightarrow{\mathbf{a}}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \overrightarrow{\boldsymbol{\ell}}=\frac{1}{2}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \quad \overrightarrow{\mathbf{m}}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right], \quad \overrightarrow{\mathbf{h}}=\frac{1}{2}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

Can you write $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}3 \\ 4 \\ 5 \\ 6\end{array}\right]$ as a linear combination of $\overrightarrow{\mathbf{a}}, \overrightarrow{\boldsymbol{\ell}}, \overrightarrow{\mathbf{m}}, \overrightarrow{\mathbf{h}}$?

What if you weren't allowed to use $\overrightarrow{\mathbf{h}}$? What is the closest you could get to being a linear combination of $\overrightarrow{\mathbf{a}}, \vec{\ell}, \overrightarrow{\mathbf{m}}$?

What if you were only allowed to use $\overrightarrow{\mathbf{a}}$? What is the closest you could get to being a linear combination of $\overrightarrow{\mathbf{a}}$?

These are called the projections onto the span of the vectors you are allowed to use, and they can be computed as in theorem 5, page 339 in the book.

MA322-007 Apr 7 Quiz
Name: \qquad
6.1a Find a vector that is orthogonal to $\overrightarrow{\mathbf{v}}=(3,4)$. Can you find one that is unit length?
6.2a Find a vector that is orthogonal to $\overrightarrow{\mathbf{u}}=(4,4,7)$ and $\overrightarrow{\mathbf{w}}=(8,-1,-4)$. Can you find one that is unit length?

Hint: $\overrightarrow{\mathbf{x}}=(1,1,1)$ is wrong, since it points in both the $\overrightarrow{\mathbf{u}}$ and the $\overrightarrow{\mathbf{w}}$ directions. Could remove the wrongness?

