Transpose

Since it is sometimes convenient to flip a matrix over its main diagonal, transforming rows into columns and visa versa (the ith row becoming the ith column and the jth column becoming the jth row), we make the following

Definition.

The *transpose* of the m × n matrix $A = (a_{ij})$ is the n × m matrix given by $A^T = C = (c_{ij})$ where $c_{ij} = a_{ji}$.

Examples

1.
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}^{T} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$
 Note, for example, the entry 6 in the 2,3 position of the

original matrix becomes the entry in the 3,2 position of the transpose.

2.
$$\begin{pmatrix} 13 & 64 & 73 \\ -5 & 28 & -9 \end{pmatrix}^{T} = \begin{pmatrix} 13 & -5 \\ 64 & 28 \\ 73 & -9 \end{pmatrix}$$

3.
$$\begin{pmatrix} 22 \\ -45 \\ 17 \\ 98 \end{pmatrix}^{T} = (22 -45 17 98)$$

Properties of the Transpose

In each of the following, suppose that A and B are matrices whose sizes make the operation well-defined.

- 1. $(A + B)^T = A^T + B^T$
- $2. \qquad (A^{T})^{T} = A$
- $3. \qquad (AB)^{T} = B^{T}A^{T}$
- 4. $(A^{-1})^T = (A^T)^{-1}$

Proof

We assume the standard notation setting $A = (a_{ii})$ and $B = (b_{ii})$.

- 1. Let A + B = C where $C = (c_{ij})$ so that we have $c_{ij} = a_{ij} + b_{ij}$. Then $(A + B)^T = C^T = (c_{ji}) = (a_{ii} + b_{ij}) = (a_{ii}) + (b_{ii}) = (a_{ii})^T + (b_{ii})^T = A^T + B^T$.
- 2. Set $A^T = C = (c_{ii})$ with $c_{ii} = a_{ii}$. We get $(A^T)^T = C^T = (c_{ii})^T = (a_{ii})^T = (a_{ii$
- 3. We use \mathbf{r}_{Ai} to denote the ith row of A and \mathbf{c}_{Aj} for the jth column of A and employ the same notation for the rows and columns of B, simply replacing the A in the subscript with a B. Then the i, jth entry in the product AB is the dot product $\mathbf{r}_{Ai} \cdot \mathbf{c}_{Bj}$ and so is the j, ith entry of $(AB)^T$. Meanwhile, the corresponding entry in the product B^TA^T is the dot product of the jth row of B^T which is the jth column of B, namely, \mathbf{c}_{Bj} , with the ith column of A^T which is the ith row of A, \mathbf{r}_{Ai} . But since the dot product is commutative, $\mathbf{r}_{Ai} \cdot \mathbf{c}_{Bj} = \mathbf{c}_{Bj} \cdot \mathbf{r}_{Ai}$, and we see that the entries of $(AB)^T$ and B^TA^T are equal; thus, $(AB)^T = B^TA^T$.
- 4. Finally, observe that, using the result from part 3, $(AA^{-1})^T = (A^{-1})^T A^T$. But $AA^{-1} = I$ and, clearly $I^T = I$, so $(A^{-1})^T A^T = I$. Consequently, $(A^{-1})^T$ acts like the inverse of A^T and so, since inverses are unique, $(A^T)^{-1} = (A^{-1})^T$.

Definition

The matrix A is said to be *symmetric* provided $A^T = A$.

From the definition it is clear that for a matrix to be symmetric, it must be square. We conclude this section by pointing out one way of creating symmetric matrices. Given any matrix, A, the product $A^{T}A$ is symmetric since $(A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T} A$.

Example

$$\begin{pmatrix} 3 & -7 \\ 5 & 10 \end{pmatrix}^{T} \begin{pmatrix} 3 & -7 \\ 5 & 10 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ -7 & 10 \end{pmatrix} \begin{pmatrix} 3 & -7 \\ 5 & 10 \end{pmatrix} = \begin{pmatrix} 34 & 29 \\ 29 & 59 \end{pmatrix}$$