Math 504, Lecture 2, Spring 2004

Axiomatic systems, the foundations of proof, and completeness of logical systems

1) Deductive Proof

a) Reader’s Guide: Section 1.5 has some curiosities worth knowing but is not central to our further development of formal logic. Do not belabor it. My notes below go off on a long philosophical and historical tangent about truth, axioms, and formal logic (under part 1. a) ii) (2). As mathematicians and mathematics teachers you should know this background, but it will not contribute much to your getting through the homework and quiz problems in this section. I do not intend to test you on it, but I feel an obligation to present it to you. I encourage you to read it and discuss it on the discussion boards if it interests you.

b) The goal of deduction

i) Deduction derives new true propositions from propositions already known to be true. Put another way, Deduction says, “Given what we already know is true, what other truths follow unavoidably.”

ii) This begs the question, “What do we already know is true?” In formal deduction we allow two sorts of propositions as true.

(1) Theorems: These are propositions proved from truths we already know using the rules of deduction.

(2) Axioms/Postulates (Here follows a long historical and philosophical exposition on topics the book glosses over.)

(a) Deduction requires raw material to work on. It cannot derive new truths without prior truths to work on. Those prior truths may follow from earlier truths and those earlier truths from earlier still. Ultimately, however, the sequence of deductions must rest on a foundation of propositions whose truth is not proved by deduction. These truths bear the name axioms or postulates.

(b) Aristotle distinguished postulates, truths specific to a particular field of study, from axioms, truths general to all of life. For instance, in Euclid’s geometry it is an axiom that two things equal to a third are equal to each other (true throughout daily experience), but it is a postulate that through two distinct points there exists a unique line (concepts peculiar to geometry). Modern mathematics, however, uses the words axiom and postulate interchangeably, with the word axiom probably being the more common.

(c) An axiom, then, is a proposition whose truth is accepted without proof as a basis for deduction. The ancient Greeks took axioms as propositions whose truth was self-evident. Indeed this is probably the view of mathematicians and logicians until at least the nineteenth century.

(d) The discovery of non-Euclidean geometry seems to have been a major step in changing the mathematical view of axioms. Nikolai Ivanovich Lobachevsky (1792–1856), János Bolyai (1802–1860), and Karl Friedrich Gauss (1777–1855) showed that one can replace Euclid’s parallel postulate (through a point off a line there is a unique line parallel to the first line) by a contradictory postulate (no parallels or many parallels) and still have a consistent (contradiction-free) logical system. They already realized that it is unclear which geometry is the geometry of the space in which we live and that it would take scientific (rather than mathematical) investigation to make this determination.

(e) Thus, for instance one can study geometry in which the parallel postulate holds, or one can study geometry in which there are no parallel lines, or one can study geometry in which there are many parallels to a given line through a given point. Each of the three systems will have some results in common and some that differ from the other two systems. As best we know, each system is logically consistent (contradiction-free) within itself.

(f) Similarly, if one wants to study groups (in abstract algebra) one begins with the group axioms, which specify that a group is a set together with an associative binary operation (usually called addition or multiplication) in which there is an identity and in which each element has an inverse. One then has to decide whether to study abelian groups (in which the operation is commutative) or nonabelian groups (in which it is noncommutative). That is, one can add or omit an axiom of commutativity. The system is consistent with or without it, but though the two systems differ dramatically from each other.

(g) As an analogy, think of playing two different versions of poker, say draw poker and five-card stud. Both are valid forms of poker. Both use the same cards. Both rank hands the same way to determine who wins. But the rules differ all the same. In draw poker you get to replace some of the cards in your hand; in five-card stud you do not. In draw poker you keep all your cards hidden; in five-card stud your opponent sees all of them but one before the end of play. Both sets of rules (axioms) lead to interesting games, but the games are different. Of course you can vary the rules (axioms) even more dramatically and play bridge, still using the same set of cards.

(h) In modern mathematics, then, one chooses the set of axioms one wishes to study. One is not necessarily looking for “true” axioms but rather consistent, interesting, and useful ones. One chooses the rules for the game one wants to play. For instance, in Algebra I and II and in Calculus, we usually do not admit imaginary solutions to equations even though we know imaginary numbers exist. Why? It makes the subject simpler, and imaginary solutions are meaningless in many of the physical situations that we apply algebra and calculus to.

(i) Similarly, if we are studying number theory (the ring of integers under addition and multiplication), then we say that 3 has only the divisors 1, 3, -1, and –3 even though we know 3 has infinitely many real divisors (for instance 9 times 1/3 equals 3) because we have limited ourselves to looking at integers. Formally we are working with the axioms that define the integers (rather than the rational numbers or real numbers).

(j) The 1989 NCTM Standards suggest that the choice of axioms is “arbitrary.” That is, one can choose axioms arbitrarily. In some weak sense this is true, just as one can make up a card game with whatever rules one wishes. An arbitrary set of rules, however, is unlikely to lead to a playable game, and an arbitrary set of axioms is likely to be self contradictory and even more likely to be boring, useless, or both.

(k) In practice a rather small number of rule sets have produced interesting, playable card games and a rather small number of axiom sets have produced interesting mathematical systems (e.g., axioms for integers, rational numbers, real numbers, complex numbers, groups, rings, fields, vector spaces, various geometries, topological spaces, and more). One must choose axioms carefully in order to get a good logical system and even more carefully to get one that is true in the real world.

(l) In viewing axioms as the “rules of a game” do we give up our claim that mathematics is objectively true? No.

(i) First, the theorems of a mathematical system are objectively true within that system. Deduction shows their truth based upon the axioms you are assuming.

(ii) Second, to the extent that our axioms are indeed true propositions about the creation around us, our deductions will also be true. If, as the Greeks did, we take axioms that are self-evident truths, then our theorems will also be objectively true. For instance, unless we are prepared to deny the existence of the whole numbers and properties of adding and multiplying them, the results of arithmetic and the theorems of number theory are objectively true. If we violate the laws of arithmetic in financial transactions, we are not merely “changing the rules of the game” but being dishonest.

(iii) Similarly our everyday experience of space shows us that it is locally Euclidean or so nearly so as to be indistinguishable from Euclidean. We happily prove results in Euclidean geometry and trigonometry and use them successfully in cabinetmaking, carpentry, construction, and surveying. One easily finds more examples in the sciences and engineering (and casinos). When we base our deductions on objectively true axioms, then the deductions are true — true in the real world — as well. (this ends the long historical and philosophical discussion)

c) The rules of deduction

i) Rules of inference

(1) It may surprise you to learn that the validity of an argument depends only on its form, not on its content. (In contrast the truth of a simple proposition depends only on its content, not on its form.)

(2) Recall that deduction derives new truths from old ones. Thus deductive arguments always take the form “given that certain propositions (hypotheses) are true, here is a further proposition (conclusion) that is true.

(3) For example, consider the following argument. If Socrates is a man, then Socrates is mortal (first hypothesis, H1). Socrates is a man (second hypothesis, H2). Therefore Socrates is mortal (conclusion, C). Our argument is that if the two hypotheses are true, then the conclusion must be as well.

(4) Note that the validity of this argument depends on its form, not on its content. All other arguments of the same form are valid. For instance consider the following: If 5 is odd, then its square it odd. Five is odd. Therefore 52 is odd.

(5) What about an argument like the following: If 5 if even, then its square is even. Five is even. Therefore 52 is even. This conclusion is false. Does that show that the argument is invalid? No! An argument is valid if true hypotheses always produce a true conclusion. Put another way, an argument is invalid if all the hypotheses can be true but the conclusion still false. In this example one of the hypotheses is false, so all bets are off. The argument makes no claims about the conclusion when there are false hypotheses.

(6) What is the form of these three arguments? The first hypothesis has the form p→q. The second has the form p. The conclusion has the form q. The whole argument takes the form ((p→q) ^ p)→q. Note that by the following truth table this compound proposition is a tautology

	p
	q
	p→q
	(p→q) ^ p
	((p→q) ^ p)→q

	T
	T
	T
	T
	T

	T
	F
	F
	F
	T

	F
	T
	T
	F
	T

	F
	F
	T
	F
	T


(7) Recall that an implication is false only when its antecedent is true and its consequent false. The particular implication we are studying is the proposition ((p→q) ^ p)→q, and we have shown that it is a tautology. That is, it is never false. Thus whenever the antecedent is true, the consequent must be true as well. The antecedent is ((p→q) ^ p). It is true only when the two hypotheses of our argument, namely p→q and p are both true. When they are, we are now guaranteed that the consequent q, the conclusion of our argument is true as well. In short we now know that an argument of this form is valid. It never yields a false conclusion from true hypotheses.

(8) We call a valid form of argument a rule of inference. The most useful ones have names; the particular form we have just studied is called the Law of Detachment or, more commonly, Modus Ponens. The usual way of stating a rule of inference is as follows

	
	p→q

	
	p

	∴
	q


(9) One reads this rule of inference as follows: “p implies q. p. Therefore q.” The three-dot triangle, in particular, stands for the word therefore.

(10) The book lists some common rules of inference on pages 23 and 24. Other books give slightly different lists, sometimes with different names. I encourage you to go through the list and make concrete arguments that fit each form. For instance rule b. on page 23, called syllogism, justifies arguments like, “If I steal the toaster, I will get caught. If I get caught, I will lose my job. Therefore, if I steal the toaster, I will lose my job.”

(11) Rule i. on page 24 is what we commonly call proof by contradiction. It says that if that negation of a proposition leads to a contradiction, then the proposition must be true.

(12) Please note again the key concept: the validity of an argument depends on the form of the argument. This determines our ability to prove the truth of the conclusion. The truth itself depends on the content of the conclusion. Content determines truth. Form determines proof.

ii) Formal Proofs

(1) A formal proof begins with a collection of propositions assumed true for the purpose of argument (hypotheses). It then proceeds through a list of other true propositions, the last of which is the desired conclusion. Next to each true proposition is the reason that it is true. The propositions are numbered, and each reason refers to any prior propositions on which it immediately depends.

(2) There are five reasons acceptable to establish the truth of a proposition in the list.

(a) It is a hypothesis (given).

(b) It is an axiom (or a definition).

(c) It is a previously proved theorem.

(d) It follows from prior propositions in the list from a rule of inference.

(e) It is logically equivalent to a prior proposition in the list.

iii) Examples

(1) Problem 22 on p. 28.

	
	p→q

	
	~r → ~q

	
	~r

	∴
	~p


(2)  Proof

	1
	p → q
	given

	2
	~r → ~q
	given

	3
	~r
	given

	4
	~q
	2,3 modus ponens

	5
	~p
	1, 4 modus tollens


(3) Problem 24 on p. 28

	
	~x → ~w

	
	(x ⋁ ~w)→z

	
	~p → ~z

	
	p → (~r ⋁ ~s)

	∴
	~r ⋁ ~s


(4) Proof

	1
	~x → ~w
	given

	2
	(x ⋁ ~w)→z
	given

	3
	~p → ~z
	given

	4
	p → (~r ⋁ ~s)
	given

	5
	~(~x) ⋁ ~w
	1, useful property h on p. 15

	6
	x ⋁ ~w
	5, double negation

	7
	z
	2, 6, modus ponens

	8
	~(~z)
	7, double negation

	9
	~(~p)
	3, 8 modus tollens

	10
	p
	9, double negation

	11
	~r ⋁ ~s
	4, 10 modus ponens


iv) Alternatives

(1) Proof by Truth Table

(a) We have noted that the statement of a theorem takes the form

	
	H1

	
	H2

	
	⋮

	
	Hn

	∴
	C


(b) We prove the theorem by demonstrating that the compound proposition (H1 ⋁ H2 ⋁ … ⋁ Hn) → C is a tautology. Above we saw how to make such demonstrations. An alternative is to use a truth table. This is unwieldy if there are many variables, but simple if there are only two or three.

(c) For instance, suppose we want to prove the addition rule of inference (rule d. on p. 23). In that case we need to show that the compound proposition p→(p⋁q) is a tautology. We might proceed as follows:

	p
	q
	p⋁q
	p→(p⋁q)

	T
	T
	T
	T

	T
	F
	T
	T

	F
	T
	T
	T

	F
	F
	F
	T


(d) This is a tautology, so we have proved the theorem (which, in this case, happens to be a rule of inference).

(2) Proof of invalidity by truth table or by example

(a) Similarly, if the truth table for the compound proposition formed by the proposition (H1 ⋁ H2 ⋁ … ⋁ Hn) → C is not a tautology, then the purported theorem is in fact not a theorem. The conclusion does not follow from the hypotheses. It does not take the whole truth table, however, to demonstrate the error. It takes only one choice of truth values for the variables (p, q, r, etc.) that makes each hypothesis true by the conclusion false.

(b) For instance, consider the invalid argument in problem #14 on p. 27.

	
	p → q

	
	q → r

	
	r

	∴
	p


(c) It is easy to show the fallacy of this argument. Let p be false, and q and r be true. Then p → q is true, q → r is true, and r is true (that is, all three hypotheses are true), but the conclusion p is false. This suffices to demonstrate that the argument is invalid.

v) Ultimately every mathematical proof depends on the principles we have just established. For mathematicians, however, these principles of deduction have become second nature. Mathematicians seldom have to think about them explicitly and seldom mention them formally in proofs. The formal two-column proof as seen above or as seen on p. 26 or in traditional geometry courses is a useful learning exercise, but mathematicians almost invariably write proofs in informal paragraph form, tacitly assuming that the interested reader will understand the logical structure that makes the proof valid. 

d) False rules (fallacies)

i) A few invalid arguments that feel very much like rules of inference come up so frequently that it is worth pointing them out. An invalid argument that pretends to be a rule of inference is a fallacy.

ii) For example consider the argument, “If Socrates is a man, then Socrates is mortal. Socrates is mortal. Therefore Socrates is a man.” This sounds plausible, and Socrates may even be a man; but the argument is not valid. If Socrates is my pet iguana, then both hypotheses are true but the conclusion is false..

iii) This fallacy is called the fallacy of denying the conclusion. It takes the form

	
	p→q

	
	q

	∴
	p


iv) Whenever p is false and q true, both hypotheses are true but the conclusion false.

v) A similar fallacy is called the fallacy of affirming the hypothesis. It takes the form

	
	p→q

	
	~p

	∴
	~q


vi) This argument fails whenever p is false and q is true. For instance consider the argument, “If Socrates is a man, then Socrates is mortal. Socrates is not a man. Therefore Socrates is not mortal.” This also fails if Socrates is my pet iguana.

vii) The book mentions two closely related fallacies on pp. 24–25. There are other common fallacies, the most familiar of which is subtly assuming the conclusion is true and then using it to prove itself. This is known as circular reasoning or begging the question.

viii) For example suppose we want to prove, “The square of an even integer is divisible by four.” On assigning this proof to a class of junior math majors, one might see a “proof” like the following: “Let n2=4a2 by the square of an even number for some integer a. Let b=a2. Then n2=4b, which is a multiple of four.” The result happens to be true, but the reasoning is circular. The statement n2=4a2  already assumes that n2 is a multiple of 4, the very result we are trying to prove. Actually, student examples of circular reasoning are usually not this subtle.

2) Completeness (One Sense of the Word)

a) The meaning of completeness

i) There are various senses in which an axiomatic system might be complete. for instance, a logical system is said to be complete if every true proposition can be proved in a finite number of steps. A famous theorem by Austrian mathematician Kurt Gödel says that first order propositional logic (or perhaps it is the first order predicate calculus — another form of symbolic logic) is complete in this sense. His far more famous theorem, Gödel’s incompleteness theorem, says that number theory (the standard ring of integers) is not complete in this sense: there are true propositions in number theory that are not provable (and false ones that are not disprovable).

ii) Section 1.5 in our book, however, discusses two other sorts of completeness. First we have already defined a logical algebra (usually called a logical calculus). This is the calculus of propositional variables combined using all of the logical operators we have seen so far (disjunction, conjunction, implication, negation, biconditional, exclusive or). Using logical equivalence, it turns out that not all of these operators are necessary. It turns out that every compound proposition expressible using all these operators can be replaced by an equivalent compound proposition using and only, or, and not. The first paragraph of section 1.5 illustrates how one shows such a result.

iii) It turns out, further, that even fewer operators are necessary. Every proposition expressible using and, or, and not has a logically equivalent proposition using only and and not. (It also has one using only or and not). This is, however, as far as one can go using the operators we have learned. There are, for instance, compound propositions that have no logical equivalent using only and.

iv) There are, however, two logical operators each of which is logically complete all by itself. The first is the Sheffer stroke (also called nand). The second is Pierce’s Arrow (also called nor). The book introduces these and gives their truth tables on p. 29. Every compound proposition constructible from all the operators we have learned thus far has a logically equivalent compound proposition using only the Sheffer stroke (and another one using only Pierce’s arrow).

v) Besides being of some theoretical interest, this fact has a practical application. All of the logical operators have representations as electrical circuits (where an input being on counts as “true” and being off counts as “false”). From a manufacturing standpoint one may get greater reliability mass producing a single logical “gate” (like nand) and using it to construct the other operators than one would get by constructing two, three, or more different sorts of gates and combining them more simply.

vi) In any case the Sheffer stroke and Pierce’s arrow are an interesting curiosity much more than a crucial part of our development of formal logic.

b) Construction of an arbitrary truth table

i) The second sense in which we might talk about completeness is in being able to construct an arbitrary truth table. Given a truth table, it is necessarily true that we can construct a compound proposition with that truth table? The answer is yes, and in fact there is a simple procedure for constructing whatever truth table we want.

ii) Suppose we want a truth table with only one true line. It is easy to construct this regardless of which line we want it to be. Simply conjoin (join with and) one copy of each variable, negating those that should be false and not negating that that should be true.

iii) An example is worth a thousand words. Suppose we want a proposition (in four variables) that is true only when p and q are true and r and s are false. Obviously the proposition p ⋀ q ⋀ ~r ⋀ ~s does the job. (Technically I need parentheses here. Multiple conjunctions, however, are associative, so there is no ambiguity). Such a proposition is called a minterm (not to be confused with the UT Miniterm!).

iv) Now suppose you want a truth table (in four variables) with only two true lines. Simply construct the minterms for each of the two lines and disjoin (combine with or) them. For instance suppose we want a proposition true only when 1. p and q are true, and q and r are false and 2. When q is false and the other propositions are true. Obviously a suitable compound proposition results from (p ⋀ q ⋀ ~r ⋀ ~s) ⋁ (p ⋀ ~q ⋀ r ⋀ s).

v) Now it is obvious how to construct an arbitrary truth table in four variables. Construct the minterm for each true line of the truth table and then disjoin all the minterms. Further this generalizes in straightforward fashion to more variables. A compound proposition formed from the disjunction of minterms is said to be in disjunctive normal form. The book explains this procedure for constructing arbitrary truth tables rather clearly on pp. 30–32. Again this is something you should know exists, but it is not crucial to our development of formal logic.

vi) It is also worth noting that one can reverse the role of conjunction and disjunction to get another method for constructing an arbitrary truth table. One can disjoin variables or their negations to get a truth table that is false on only one line. Such an expression is a maxterm. One can then conjoin maxterms to get a compound proposition false on specified lines of the truth table and true on all others. The conjunction of maxterms  produces an expression in conjunctive normal form.























































