Exam 1

Name:	G .:
Name:	Section:
1101110	

Do not remove this answer page — you will return the whole exam. You will be allowed two hours to complete this test. You are allowed to use notes on a single piece of 8.5" by 11" paper, front and back, including formulas and theorems. You are required to turn this notes page in with your exam. You may use a graphing calculator during the exam, but NO calculator with a Computer Algebra System (CAS). Absolutely no communication device use during the exam is allowed.

The exam consists of 10 multiple choice questions and 5 free response questions. Record your answers to the multiple choice questions on this page by filling in the circle corresponding to the correct answer.

Show <u>all work</u> to receive full credit on the free response problems. It will also help you check your answers to show work on multiple choice problems.

Multiple Choice Questions

1 A B C D E 6 A B C	\bigcirc
---------------------	------------

- **2** (A) (B) (C) (D) (E) **7** (A) (B) (C) (D) (E)
- **3** (A) (B) (C) (D) (E) **8** (A) (B) (C) (D) (E)
- **5** (A) (B) (C) (D) (E) **10** (A) (B) (C) (D) (E)

Multiple						Total
Choice	11	12	13	14	15	Score
50	10	10	10	10	10	100

Multiple Choice Questions

- 1. (5 points) Find $\int x^3 \ln x \ dx$.
 - A. $\frac{1}{4}x^4 \ln x \frac{1}{16}x^4 + C$
 - B. $x^2 + \frac{3}{2}x + C$
 - C. $\frac{1}{4}x^4 \ln x + \frac{1}{20}x^5 \ln x + C$
 - D. $\frac{1}{4}x^4 + \frac{1}{2}\ln x^2 + C$
 - E. $\frac{1}{3}x^3 + \ln x + C$
- 2. (5 points) If f(1) = 5, f(5) = 2, f'(1) = 6 and f'(5) = 1, and f''(x) is continuous, what is $\int_{1}^{5} (3x+1)f''(x) dx$?
 - A. $\frac{55}{2}$
 - B. 1
 - C. -5
 - D. 16
 - E. -8
- 3. (5 points) Find $\int \cos^8 x \sin^3 x \ dx$.
 - A. $\frac{1}{9}\cos^9 x \cdot \frac{1}{4}\sin^4 x + C$
 - B. $\left(\frac{1}{2}x \frac{1}{4}\sin(2x)\right)^4 + C$
 - C. $\frac{1}{9}\cos^9 x \frac{1}{17}\cos^{17} x + C$
 - D. $-\frac{1}{9}\cos^9 x + \frac{1}{11}\cos^{11} x + C$
 - E. $-8\cos^7 x + 10\cos^9 x + C$

- 4. (5 points) Find $\int \cos^2(7x) dx$.
 - A. $\frac{1}{21}\cos^3(7x) + C$
 - B. $\frac{1}{2}x + \frac{1}{28}\sin(14x) + C$
 - C. $14\cos(7x)\sin(7x) + C$
 - D. $\frac{7}{2}x + \frac{7}{4}\sin(2x) + C$
 - E. $x \frac{1}{21}\sin^3(7x) + C$

5. (5 points) Which trigonometric substitution would be most helpful in evaluating

$$\int \frac{x^2}{\sqrt{25-x^2}} dx$$
?

- A. $x = 5 \tan \theta$
- B. $x = \frac{5}{\sin \theta}$
- C. $x = 5\sin\theta$
- D. $x = \frac{\tan \theta}{5}$
- E. $x = 5 \sec \theta$

6. (5 points) Find

$$\int_{1}^{\infty} \frac{1}{x^7} dx$$

- A. ∞
- B. $\frac{1}{7}$
- C. 1
- D. $\frac{6}{37}$
- E. $\frac{1}{6}$
- 7. (5 points) What is the form of the partial fraction decomposition of

$$\frac{5x^2 - 7x + 1}{x^3(x^2 + 7)}$$
?

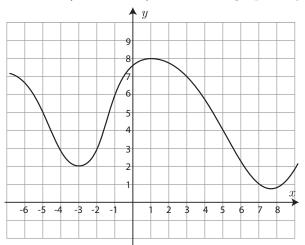
- A. $\frac{A}{x^3} + \frac{Bx + C}{x^2 + 7}$
- B. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 7}$
- C. $\frac{Ax+B}{x^3} + \frac{Cx+D}{x^2+7}$
- D. $\frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{D}{x^2 + 7}$
- E. $\frac{A}{x} + \frac{B}{x^3} + \frac{D}{x+7} + \frac{E}{x^2+7}$
- 8. (5 points) If $sin(\theta) = 2x$, then what is $tan(\theta)$?
 - A. $\frac{1}{\sqrt{1-4x^2}}$
 - $B. \ \frac{x}{\sqrt{4-x^2}}$
 - $C. \ \frac{\sqrt{1-4x^2}}{2x}$
 - D. $\frac{2x}{\sqrt{1-4x^2}}$
 - $E. \ \frac{\sqrt{4-x^2}}{x}$

- 9. (5 points) Let f(x) be a function that satisfies $|f''(x)| \le 6$ on the interval [3,7]. Choose the smallest n so that we can be sure that $E_M = |M_n \int_3^7 f(x) dx| \le 0.002$, where M_n is the midpoint approximation with n intervals.
 - A. n = 106
 - B. n = 90
 - C. n = 84
 - D. n = 26
 - E. n = 140

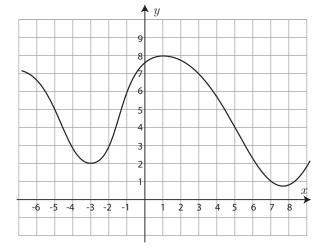
- 10. (5 points) Find the Trapezoidal rule estimate of $\int_2^5 f(x) dx$ with n = 6.
 - A. $\frac{3}{2}(f(2) + 4f(2.5) + 2f(3) + 4f(3.5) + 2f(4) + 4f(4.5) + f(5))$
 - B. $\frac{1}{2}(f(2.25) + f(2.75) + f(3.75) + f(4.25) + f(4.75))$
 - C. $\frac{1}{6}(f(2) + 2f(2.5) + 2f(3) + 2f(3.5) + 2f(4) + 2f(4.5) + f(5))$
 - D. $\frac{1}{4}(f(2) + 2f(2.5) + 2f(3) + 2f(3.5) + 2f(4) + 2f(4.5) + f(5))$
 - E. $\frac{1}{2}(f(2) + f(2.5) + f(3) + f(3.5) + f(4) + f(4.5))$

Free Response Questions: Show all steps clearly to receive full credit.

11. (10 points) Compute $\int x^2 \cos x \, dx$.


12. (10 points) Compute $\int \frac{dx}{\sqrt{x^2+16}}$ using trigonometric substitution. You **must** simplify your answer.

13. (10 points) Compute $\int_2^{27} \frac{1}{(x-2)^{\frac{1}{2}}} dx$. Justify your answer by showing your work and using proper notation.


14. (10 points) Using the method of partial fractions, compute

$$\int \frac{3x^2 - 3x + 8}{x(x-2)^2} \, dx$$

15. (a) (5 points) Apply **Simpson's** rule to estimate the integral $\int_{-5}^{3} f(x) dx$ using **four** intervals (i.e, find S_4), where the graph of f(x) is given below.

(b) (5 points) Apply the **midpoint** rule to estimate the integral $\int_{-3}^{9} f(x) dx$ using **three** intervals (i.e, find M_3), where the graph of f(x) is given below.

