Chapter 3: Practice/review problems

The collection of problems listed below contains questions taken from previous MA123 exams.

Limits and one-sided limits										
[1]. Suppose $H(t) = t^2 + 5t + 1$. Find the limit $\lim_{t \to 2} H(t)$.										
	(a)	15	(b)	1	(c)	9	(d)	6	(e)	2t + 5
[2].	Find	the limit	$\lim_{t \to 2} \frac{t^2}{t}$	$\frac{-4}{-2}$.						
	(a)	2	(b)	4	(c)	6	(d)	8	(e)	The limit does not exist
[3].	Find	the limit	$\lim_{x \to 5} \frac{x}{x^2}$	$\frac{x-5}{2-25}.$						
	(a)	$-\frac{1}{10}$	(b)	$-\frac{1}{5}$	(c)	0	(d)	$\frac{1}{5}$	(e)	$\frac{1}{10}$
[4].	Com	pute $\lim_{x \to 3} \frac{1}{x}$	$\frac{x^2 - 7x}{x - 7x}$	$\frac{x+12}{-3}.$						
	(a)	0	(b)	1	(c)	-1	(d)	2	(e)	The limit does not exist
[5].	Find	$\lim_{r \to 1} \frac{r^2 - r}{r}$	$\frac{3r+2}{-1}$							
	(a)	1	(b)	0	(c)	-1	(d)	2	(e)	The limit does not exist
[6].	Find	l the limit or	• state	that it does r	not ex	xist: $\lim_{x \to 4} \frac{x^2}{x}$	$\frac{x-4}{x-4}$	$\frac{-20}{4}$.		
	(a)	8	(b)	-20	(c)	-15	(d)	9	(e)	Does Not Exist
[7].	Com	$\lim_{x \to 0} $	$\left(\frac{2x^2}{x}\right)$	$\frac{-3x+4}{x} + \frac{5x}{3}$	$\left(\frac{x}{x}\right)$).				
	(a)	5	(b)	4	(c)	3	(d)	2	(e)	1
[8].	Com	$\lim_{h \to 0} \frac{1}{2}$	$\frac{(h+4)}{h}$	$\frac{1}{n}^{2}-16$.						
	(a)	4	(b)	5	(c)	6	(d)	7	(e)	8
[9].	Find	the limit	$\lim_{t\to 0^+} \frac{Y}{t}$	$\frac{\sqrt{t^3}}{\sqrt{t}}.$						
	(a)	0	(b)	1	(c)	2	(d)	3	(e)	The limit does not exist

[10].	Find	the limit as a	$x ext{ tenc}$	ls to 0 from t	he lei	ft $\lim_{x \to 0^-} \frac{ x }{2x}$.				
	(a)	1/3	(b)	1/2	(c)	0	(d)	-1/2	(e)	-1/3
[11].	Find	the limit	lim	$\frac{4h }{h}$.						
	$(\mathbf{Hin}$	n t: Evaluate t	t→0 [_] the qu	notient for sor	ne ne	gative values	of h c	close to 0.)		
	(a)	0	(b)	2	(c)	-2	(d)	4	(e)	-4
[12].	Com	pute lim	4x -	$\frac{12 }{2}$.						
	(a)	$x \rightarrow 3^{-}$	x – (b)	-4	(c)	0	(d)	Doesn't exist	(e)	Cannot be determined
								(1)	• 6	
[13].	Find	the limit of .	f(x) a	s x tends to x	2 fror	n the left if	f(x)	$= \begin{cases} 1+x^2\\x^3 \end{cases}$	$\begin{array}{ccc} \text{if} & x \\ \text{if} & x \end{array}$	r < 2 $r \ge 2$
	(a)	5	(b)	6	(c)	7	(d)	8	(e)	9
[1]]	Find	the limit of	f(x) o	s x tonds to b	9 from	n the left if	f(x)	$\int x^3 - 2$	if x	$r \ge 2$
[14]•	r ma		f(x) a		2 1101	_	f(x)	$(-) (1+x^2)$	if x	2
	(a)	5	(b)	6	(c)	7	(d)	8	(e)	Does not exist
[15].	For t	he function	f(x)	$= \begin{cases} 4x^2 - 1\\ 3x + 2 \end{cases}$	i	$\begin{array}{l} \text{f } x < 1 \\ \text{f } x > 1 \end{array}$				
	Find	$\lim_{x \to 1^+} f(x).$		(0.0 + 2	1					
	(a)	5	(b)	3	(c)	1	(d)	0	(e)	The limit does not exist
		$\int r^2$	$\perp 8r$	$\perp 15$ if $r <$	۰ ŋ					
[16].	Let	$f(x) = \begin{cases} x \\ 4x \end{cases}$	+ 5x + 7	$10 \text{if } x \ge 10$	2 2.					
	Find	$\lim_{x \to 2^+} f(x).$								
	(a)	15	(b)	20	(c)	30	(d)	35	(e)	The limit does not exist
[17]	Lot	$f(x) = \int -\xi$	5x + 7	if $x < 3$						
[11].	Det	$\int (x) = \begin{cases} x^2 \\ y \\ y \end{cases}$	- 16	if $x \ge 3$.						
	Find	$\lim_{x \to 3^+} f(x).$	(1)	C	()	-	(1)	0		
	(a)	0	(b)	-0	(c)	-7	(d)	-8	(e)	The limit does not exist
[18].	Supp	pose $f(t) =$	$\begin{cases} -t \\ t^2 \end{cases}$	if $t < 1$ if $t > 1$						
	Find	the limit l_{t}	$\lim_{t \to 1} f(t)$;).						
	(a)	-1	(b)	1	(c)	0	(d)	2	(e)	The limit does not exist

[19]. Suppose $f(t) = \begin{cases} (-t)^2 & \text{if } t < 1 \\ t^3 & \text{if } t \ge 1 \end{cases}$ Find the limit $\lim_{t \to 1} f(t)$. (a) -2 (b) -1 (c) 1 (d) 2 (e) The limit does not exist

[20]. Suppose the total cost, C(q), of producing a quantity q of a product equals a fixed cost of \$1000 plus \$3 times the quantity produced. So total cost in dollars is

$$C(q) = 1000 + 3q$$

The average cost per unit quantity, A(q), equals the total cost, C(q), divided by the quantity produced, q. Find the limiting value of the average cost per unit as q tends to 0 from the right. In other words find

$$\lim_{q \to 0^+} A(q)$$

(a) 0 (b) 3 (c) 1000 (d) 1003 The limit does not exist (e) Limits at infinity $\lim_{t \to \infty} \frac{3}{1+t^2}.$ [21]. Find the limit (b) 1 (a) 0 (c) 2 (d) 3 (e) The limit does not exist $\lim_{x \to \infty} \frac{x^2 + x + 1}{(3x + 2)^2}.$ [22]. Find the limit (a) 1 **(b)** 1/3 (c) 0 (d) 1/9 (e) The limit does not exist $\lim_{s \to \infty} \frac{s^4 + s^2 + 13}{s^3 + 8s + 9}.$ [23]. Find the limit (a) 0 **(b)** 1 (c) 2 (d) 3 (e) The limit does not exist $\lim_{x \to \infty} \frac{2x^2}{(x+2)^3}.$ [24]. Find the limit The limit does not exist **(a)** 0 **(b)** 1 (c) 2 (d) 3 (e)

[25]. Suppose the total cost, C(q), of producing a quantity q of a product is given by the equation

$$C(q) = 5000 + 5q.$$

The average cost per unit quantity, A(q), equals the total cost, C(q), divided by the quantity produced, q. Find the limiting value of the average cost per unit as q tends to ∞ . In other words find

$$\lim_{q \to \infty} A(q)$$

(a) 5 (b) 6 (c) 5000 (d) 5006 (e) The limit does not exist

Continuity and differentiability

[26]. Suppose $f(t) = \begin{cases} Bt & \text{if } t \leq 3\\ 5 & \text{if } t > 3 \end{cases}$

Find a value of B such that the function f(t) is continuous for all t.

(a)
$$3/5$$
 (b) $4/5$ (c) $5/3$ (d) $5/4$ (e) $5/2$

[27]. Suppose that $f(x) = \begin{cases} A+x & \text{if } x < 2\\ 1+x^2 & \text{if } x \ge 2 \end{cases}$

Find a value of A such that the function f(x) is continuous at the point x = 2.

(a) A = 8 (b) A = 1 (c) A = 2 (d) A = 3 (e) A = 0

[28]. Suppose $f(t) = \begin{cases} t & \text{if } t \leq 3 \\ A + \frac{t}{2} & \text{if } t > 3 \end{cases}$

Find a value of A such that the function f(t) is continuous for all t.

- (a) 1/2 (b) 1 (c) 3/2 (d) 2 (e) 5/2
- [29]. Consider the function $f(x) = \begin{cases} 2x^2 + 3 & \text{if } x \leq 3 \\ 3x + B & \text{if } x > 3 \end{cases}$.

Find a value of B such that f(x) is continuous at x = 3.

(a) 6 (b) 9 (c) 12 (d) 15 (e) There is no such value of B.

[30]. Find all values of a such that the function $f(x) = \begin{cases} x^2 + 2x & \text{if } x < a \\ -1 & \text{if } x \ge a \end{cases}$ is continuous everywhere. (a) a = -1 only (b) a = -2 only (c) a = -1 and a = 1(d) a = -2 and a = 2 (e) all real numbers

[31]. Which of the following is true for the function f(x) given by

$$f(x) = \begin{cases} 2x - 1 & \text{if } x < -1 \\ x^2 + 1 & \text{if } -1 \le x \le 1 \\ x + 1 & \text{if } x > 1 \end{cases}$$

- (a) f is continuous everywhere
- (b) f is continuous everywhere except at x = -1 and x = 1
- (c) f is continuous everywhere except at x = -1
- (d) f is continuous everywhere except at x = 1
- (e) None of the above

[32]. Which of the following is true for the function f(x) = |x - 1|?

- (a) f is differentiable at x = 1 and x = 2.
- (b) f is differentiable at x = 1, but not at x = 2.
- (c) f is differentiable at x = 2, but not at x = 1.
- (d) f is not differentiable at either x = 1 or x = 2.
- (e) None of the above.