Chapter 6: Practice/review problems

The collection of problems listed below contains questions taken from previous MA123 exams.

Extreme values problems on a closed interval

[1]. Suppose $f(t) = \begin{cases} \sqrt{4-t} & \text{if } t < 4\\ \sqrt{t-4} & \text{if } t \ge 4. \end{cases}$

Find the minimum of f(t) on the interval [0,6].

- (a) 0
- **(b)** 2
- (c) 4
- (d) 6
- (e) 8

[2]. Let $g(s) = \frac{s-1}{s+1}$. Find the maximum of g(s) on the interval [0,2].

- **(b)** 0
- (c) 1/3

(e) Neither the maximum nor the minimum exists on the given interval.

[3]. Suppose $f(t) = \begin{cases} t^2 - 2t + 2 & \text{if } t < 1 \\ t^3 & \text{if } t \ge 1. \end{cases}$

Find the minimum of f(t) on the interval [0, 2].

- (a) -1
- **(b)** 0
- **(c)** 1
- (d) 2
- (e) 8

[4]. Let $f(x) = 3x^2 + 6x + 4$. Find the maximum value of f(x) on the interval [-2, 1].

- (a) 5
- **(b)** 7
- (c) 9
- (d) 13
- (e) -1

[5]. Let $G(x) = \begin{cases} (x-3)+6 & \text{if } x \ge 3\\ -(x-3)+6 & \text{if } x < 3. \end{cases}$

Find the minimum of G(x) on the interval [-10, 10].

- (a) 3
- **(b)** 1
- (c) -6
- **(d)** 19
- **(e)** 6

[6]. Let $g(s) = \frac{1}{s+1}$. Find the maximum of g(s) on the interval [0,2].

- (a) -1
- **(b)** 0
- (c) 1
- (d) 2

(e) Neither the maximum nor the minimum exists on the given interval.

[7]. Find the minimum value of $f(x) = x^3 - 3x + 3$ on the interval [-2, 4].

- (a) 2
- **(b)** 1
- **(c)** 0
- (d) -1 (e) -2

[9].	Find the minimum value of $f(x) = \sqrt{x^2 - 2x + 16}$ on the interval [0, 5].									
	(a)	1	(b)	2	(c)	$\sqrt{15}$	(d)	$\sqrt{12}$	(e)	0
[10].	Let j	$f(x) = x^2 - 1 $	1 + 2.	Find the mi	nimu	m of $f(x)$ on	the in	aterval $[-3, 3]$		
	(a)	3	(b)	0	(c)	1	(d)	2	(e)	-1
[11].		pose $f(t) = 2$ mum.	$t^3 - 9$	$2t^2 + 12t + 3$	1. Fi	nd the value	of t is	n the interva	1 [0, 3] where $f(t)$ takes on its
	(a)	0	(b)	1	(c)	2	(d)	3		
	(e)	Neither the 1	maxin	num nor the	minin	num exists on	the g	given interval.		
[12].	insta	ntaneous rate	e of ch	nange of $Q(t)$	at $t =$	=2A				from 1 to A equals the
	(a)	1	(b)	$\frac{1}{3}$	(c)	$\frac{1}{4}$	(d)	$\frac{1}{5}$	(e)	Does not exist
				Mea	n Val	lue Theoren	n pro	blems		
[13].		the value of ual to the ins							g(s) =	$= s^3$ on the interval $[0, A]$
	(a)	$\sqrt{2}$	(b)	$\sqrt{3}$	(c)	$\sqrt{5}$	(d)	$\sqrt{6}$	(e)	$\sqrt{12}$
[14].		$\begin{aligned} &\text{pose } k(s) = s^2 \\ &\text{ge of } k(s) \text{ on } \end{aligned}$			value	c in the interv	val [1,	3] such that	k'(c)	equals the average rate of
	(a)	-1	(b)	0	(c)	1	(d)	2	(e)	3
[15].		$k(x) = x^3 + 2x$ 1 to $x = 3$ is ϵ								te of change of $k(x)$ from
	(a)	30	(b)	15	(c)	$\sqrt{\frac{28}{3}}$	(d)	$\sqrt{\frac{13}{3}}$	(e)	60
				Incre	easing	g/decreasing	g pro	blems		
[16].	Whie	ch function is	alway	s increasing	on (0	,2)				
	(a)	$\sqrt{x} + x^2$			(b)	x + (1/x)			(c) :	$x^3 - 3x$
			(d)	7- x		x + (1/x)	(e)	$(x-1)^4$		

(d) 26

(e) 28

[8]. Find the maximum of g(t) = |t+4| + 10 on the interval [-12,12].

(b) 20

(a) 19

(c) 24

	(-5,	A).								
	(a)	-4	(b)	-2	(c)	0	(d)	2	(e)	4
[19].	Let .	$f(x) = e^{-x^2}.$	Find t	the intervals	where	f(x) is decre	easing	·.		
	(a)	$(-\infty,0)$			(b)	$(0,\infty)$			(c)	$(-\infty, -1)$
			(d)	$(1,\infty)$			(e)	(-1, 1)		
[20].	Let .	$f(x) = x \ln x.$	Find	the intervals	wher	f(x) is incr	easing	ŗ.		
	(a)	$(0,\infty)$			(b)	$(1,\infty)$			(c)	(e,∞)
			(d)	$(1/e, \infty)$			(e)	(1/e,e)		
[21].	Suppose of the	pose the cost, the cost with re	C(q), espect	of stocking a to q is called	a qua	ntity q of a primarginal cost	oduct	t equals $C(q)$ en is the ma	rgina	$\frac{00}{q} + q$. The rate of change l cost positive?
	(a)	q > 10	(b)	q > 15	(c)	q < 20	(d)	q < 25	(e)	q = 30
[22].			t < -		(b)	$2t + 1$ increas $-\sqrt{2/3} < t < 1$	$<\sqrt{2}$	/3 Never	(c)	$0 < t < \sqrt{4/3}$
[23].	Supp	pose that $g'(x)$	$(x) = x^2$	$x^2 - x - 6$. Fin	nd th	e interval(s) v	where	g(x) is incre	asing	
						$(0,\infty)$				
		,		,	,	ermined from		,		, ,
[24].	Let .	$f(x) = xe^{2x}.$	Then	f is decreasing	ng on	the following		val.		(1/9)
	(a)	$(-\infty, -1/2)$			(b)	$(-1/2,\infty)$	<i>(</i>)		(c)	$(-\infty, 1/2)$
			(d)	$(1/2,\infty)$			(e)	$(-\infty,0)$		
						91				

[17]. Suppose that a function f(x) has derivative $f'(x) = x^2 + 1$. Which of the following statements is true

The function is increasing on $(-\infty, -1)$ and $(1, \infty)$, and the function is decreasing on (-1, 1).

[18]. Find the largest value of A such that the function $g(s) = s^3 - 3s^2 - 24s + 1$ is increasing on the interval

The function is increasing on $(-\infty,0)$, and the function is decreasing on $(0,\infty)$.

The function is decreasing on $(-\infty, 0)$, and the function is increasing on $(0, \infty)$.

about the graph of y = f(x)?

(b)

(d)

(e)

The function is increasing on $(-\infty, \infty)$

The function is decreasing on $(-\infty, \infty)$

[25].	Find the interval(s) where $f(x) = -x^3 + 18x^2 - 105x + 4$ is increasing. (Note that the coefficient of x^3 is -1 , so compute carefully.)									
	(a) $(-\infty, 5)$ and	$(7,\infty)$	(b) (5,7)		(c) $(-\infty, -5)$ and $(7, \infty)$					
		(d) $(-5,7)$		(e) $(-7,5)$						
[26].	Suppose that $f(x) = xg(x)$, and for all positive values of x the function $g(x)$ is negative (i.e., $g(x) < 0$) and decreasing. Which of the following is true for the function $f(x)$?									
	(a) $f(x)$ is negative and decreasing for all positive values of x .									
	(1) $(()$	1	. C 11 '4'	1 C						

(b)	f(x)	is	positive	and	incre	asing	for	all	positive	values	of r

- f(x) is positive and increasing for all positive values of x.
- f(x) is negative and increasing for all positive values of x.
- f(x) is positive and decreasing for all positive values of x. (d)
- (e) None of the above.
- [27]. Suppose the derivative of a function g(x) is given by $g'(x) = x^2 1$. Find all intervals on which g(x) is increasing.

(a)
$$(-\infty, \infty)$$
 (b) $(-1, 1)$ (c) $(-\infty, -1)$ and $(1, \infty)$ (d) $(0, \infty)$ (e) $(-\infty, 0)$

Extreme values problems using the first derivative

- [28]. Suppose the derivative of the function h(x) is given by h'(x) = 1 |x|. Find the value of x in the interval [-1,1] where h(x) takes on its minimum value.
 - **(c)** 0 (b) -1**(d)** 1/2 (a) -1/2**(e)** 1
- [29]. Suppose the total cost, C(q), of producing a quantity q of a product equals

$$C(q) = 1000 + q + \frac{1}{10}q^2.$$

The average cost, A(q), equals the total cost divided by the quantity produced. What is the minimum average cost? (Assume q > 0)

- **(c)** 26 (a) 20 **(b)** 21 **(d)** 30 (e) 31
- [30]. Suppose that a function h(x) has derivative $h'(x) = x^2 + 4$. Find the x value in the interval [-1,3] where h(x) takes its minimum.
 - **(b)** 3 (a) -1(c) 5 (d) 13 (e) 29

[31].	Supp	cose the cost, q gives the	C(q)ne min	, of stocking	; a qu	antity q of ϵ	a prod	uct equals C	f'(q) =	$\frac{100}{q} + q$. Which positive
	(a)	10	(b)	15	(c)	20	(d)	25	(e)	30
[32].	Find	a local extre	eme po	oint of $f(x)$ =	$=\frac{\ln x}{x}$					
		(1,0) is a lo			•		(b)	(1,0) is a lo	cal mi	nimum point.
	(c)	(e,1/e) is a	local	minimum po	int.		(d)	(e,1/e) is a	local 1	maximum point.
				(e) f(x) has	s no local ex	$_{ m treme}$	points.		
[33].		pose the derive $G(q)$					(q + 1)	$^{2}(q+2)^{2}$. Fi	nd the	e value of q in the interval
	(a)	-5	(b)	-2	(c)	-1	(d)	0	(e)	5
[34].		pose the derivers $H(s)$ takes			en by	$H'(s) = s^2(s)$	s+1).	Find the value	ue of s	in the interval $[-100, 100]$
	(a)	-100	(b)	-1	(c)	0	(d)	1	(e)	100
					Co	ncavity pro	blem	s		
[35].	Find	the intervals	wher	$e f(x) = x^4$	-12x	$3 + 48x^2 + 1$	0x - 8	is concave d	lownwa	ard.
	(a)	$(-\infty,\infty)$			(b)	$(1,\infty)$			(c)	$(-\infty, -4)$ and $(-2, \infty)$
			(d)	$(-\infty,2)$ an	d (4,	∞)	(e)	(2,4)		
[36].	Let j	$f(x) = e^{-x^2}.$	Find	the intervals	where	f(x) is con	cave u	pward.		
	(a)	$(1,\infty)$			(b)	(-e,e)			(c)	$(-\infty, -\sqrt{1/2})$ and $(\sqrt{1/2}, \infty)$
			(d)	$(-\sqrt{1/2},\sqrt{1/2})$	$\sqrt{1/2}$)		(e)	$(-\infty, -e)$ a	and $(e,$	$,\infty)$
[37].	Let j	$f(x) = x \ln x.$	Find	the intervals	s when	f(x) is con	ncave	downward.		
	(a)	(0, 1)			(b)	$(0,\infty)$			` '	(0, 1/e)
			(d)	$(1/e, \infty)$			(e) whe		ot con	cave downward any-
[38].		oose that the nward on the				ven by $f'(x)$	$=x^2$	-5x + 6. Th	en the	e graph of $f(x)$ is concave
	(a)	$(-\infty,2)$ and	$1 (3, \infty)$	o)	(b)	(2,3)			(c)	$(-\infty, 2.5)$
			(d)	$(2.5,\infty)$			(e)	f(x) in not c	oncave	e downward on any interval
[39].	Find	the interval	s) wh	ere the grapl	n of f	$(x) = x^4 + 1$	$8x^{3} +$	$120x^2 + 10x$	+ 50 i	s concave downward.
	(a)	(-5, 4)			(b)	(4, 5)			(c)	$(-\infty,4)$ and $(5,\infty)$
			(d)	(-5, -4)			(e)	$(-\infty, -5)$ a	and (-	$-4,\infty)$