
MA123, Chapter 11: Estimating Definite Integrals

Chapter Goals: • Estimate the value of a definite integral using left endpoints, right endpoints, mid-
points, or trapezoids.

• Understand the formal definition of the definite integral. (Optional)

Assignments: Assignment 20 Assignment 21

General philosophy: In this chapter, we will learn to estimate the definite integral for functions where
we cannot use geometry to compute the areas. The key idea is to notice that the value of the function does

not vary very much over a small interval, and so it is approximately constant over a small interval. We will
use the areas of particular rectangles or trapezoids to estimate the integrals. One particular type of estimation
using rectangles is called a Riemann sum.

Example 1: Estimate the area under the graph of y = x2 +
1

2
x for x between

0 and 2 in two different ways:

(a) Subdivide the interval [0, 2] into four equal subintervals and use the left end-
point of each subinterval as “sample point.”

(b) Subdivide the interval [0, 2] into four equal subintervals and use the right
endpoint of each subinterval as “sample point.”

Dividing [0, 2] into four equal pieces is an example of a partition of the interval
[0, 2]. Most of our partitions will use equal-width subdivisions, though that is not
required.

(c) Find the difference between the two estimates (right endpoint estimate minus
left endpoint estimate).
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Example 2: Estimate the area under the graph of y = 3x for x

between 0 and 2.

(a) Use a partition that consists of four equal subintervals of [0, 2],
and use the left endpoint of each subinterval as a sample point.

(b) Use a partition that consists of four equal subintervals of [0, 2],
and use the midpoint of each subinterval as a sample point.
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Note:

In the previous two examples we systematically chose the value of the function at a particular point of each
subinterval. However, since the guiding idea is that we are assuming that the values of the function over a
small subinterval do not change by very much, then we could take the value of the function at any point of
the subinterval as a good sample or representative value of the function. We could also have chosen small
subintervals of different lengths. However, we are trying to establish a systematic procedure that works well in
general.

Getting better estimates:

We can only expect the previous answers to be approximations of the correct answers. This is because the
values of the function do change on each subinterval, even though they do not change by much.

If, however, we replace the subintervals we used by “smaller” subintervals we can reasonably expect the values
of the function to vary by much less on each thinner subinterval. Thus, we can reasonably expect that the area
of each thinner vertical strip under the graph of the function to be more accurately approximated by the area
of these thinner rectangles. Then if we add up the areas of all these thinner rectangles, we should get a much
more accurate estimate for the area of the original region.



Here is Example 1(b), revisited:
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We will see later that the exact value of the area under consideration in Example 1 is
11

3
≈ 3.66.

Example 3: We could estimate the area under the graph of y =
1

x
for x between 1 and 31 by dividing the

interval [1, 31] into 30 equal subintervals and using the left endpoint of each subinterval as sample point. Next,
we could estimate the area using the right endpoint as sample point.
Find the difference between the two estimates (left endpoint estimate minus right endpoint estimate).



Example 4: Suppose you estimate the area under the graph of f(x) = x3 from x = 4 to x = 24 by adding
the areas of rectangles as follows: partition the interval into 20 equal subintervals and use the right endpoint
of each interval to determine the height of the rectangle. What is the area of the 15th rectangle?

Example 5: Suppose you estimate the area under the graph of f(x) =
1

x
from x = 12 to x = 112 by adding

the areas of rectangles as follows: partition the interval into 50 equal subintervals and use the left endpoint of
each interval to determine the height of the rectangle. What is the area of the 24th rectangle?

Example 6: An object travels in a straight line, and we would like to estimate how far the object traveled

during the time interval 0 ≤ t ≤ 5, but we only have the following information about the velocity of the object:

time (sec) 0 1 2 3 4 5

velocity (m/sec) −3 −1 −4 1 3 6

(a) Using left endpoints as sample points, estimate the object’s total displacement over the time interval.

(b) Using left endpoints as sample points, estimate the object’s total distance traveled over the time interval.



Example 7: The rate (in liters per minute) at which water drains from a tank is recorded at two-minute

intervals. Use the average of the left- and right-endpoint approximations to estimate the total amount of water
drained during the first 6 min.

t min 0 2 4 6

l/min 48 46 44 42

Trapezoids versus rectangles:

We recognize that the average of the left and right estimates is more accu-
rate than either individually. Instead of computing each separately, we can
achieve this in one calculation. We do this by using trapezoids instead of
rectangles. Recall that the area of a trapezoid is

Area of a trapezoid =
(h1 + h2) · b
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Example 8: A train travels in a straight westward direction along a
track. The velocity of the train varies, but it is measured at regular time
intervals of 1/10 hour. The measurements for the first half hour are

time 0 0.1 0.2 0.3 0.4 0.5

velocity 0 10 15 18 20 25

where the velocity in the table is given in miles per hour. Compute the
total distance traveled by the train during the first half hour by assuming
the velocity is a linear function of t on the subintervals.
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Example 9: Suppose you are given the following data points for a function f(x):

x 1 2 3 4

f(x) 2 5 8 12

If f is a linear function on each interval between the given points, find

∫

4

1

f(x) dx.



⋆ The following material is optional ⋆

◮ Sigma (Σ) notation: In approximating areas we have encountered sums with many terms. A convenient

way of writing such sums uses the Greek letter Σ (which corresponds to our capital S) and is called sigma

notation. More precisely, if a1, a2, . . . , an are real numbers we denote the sum

a1 + a2 + · · ·+ an

by using the notation
n
∑

k=1

ak.

The integer k is called an index or counter and takes on (in this case) the values 1, 2, . . . , n.
For example,

6
∑

k=1

k2 = 12 + 22 + 32 + 42 + 52 + 62 = 1 + 4 + 9 + 16 + 25 + 36 = 91

whereas
6

∑

k=3

k2 = 32 + 42 + 52 + 62 = 9 + 16 + 25 + 36 = 86.

The idea we have used so far is to break up or subdivide the given interval [a, b] into lots of little pieces, or
subintervals, on each of which the variable x, and thus the function f(x), does not change much. The technical
phrase for doing this is to “partition” [a, b].

Definition of a partition: A partition of an interval [a, b] is a collection of points {x0, x1, x2, . . . , xn−1, xn},
listed increasingly, on the x-axis with a = x0 and xn = b. That is: a = x0 < x1 < x2 < . . . < xn−1 < xn = b.
These points subdivide the interval [a, b] into n subintervals: [a, x1], [x1, x2], [x2, x3], . . . , [xn−1, b].
The k-th subinterval is thus of the form [xk−1, xk] and it has length ∆xk = xk − xk−1.

Assumption: Set ‖P‖ = max
1≤i≤n

{∆xi}. We will always assume that our partition P is such that ‖P‖ → 0

as n → ∞. In other words, we always assume that the length of the longest (and as a consequence of all)
subinterval(s) tend(s) to zero whenever the number of subintervals in our partition P becomes very large.

◮ The definite integral:

Let f(x) be a function defined on an interval [a, b]. Partition the interval [a, b] in n subintervals of lengths
∆x1, . . . ,∆xn, respectively. For k = 1, . . . , n pick a representative point pk in the corresponding k-th subinterval.
The definite integral of the function f from a to b is defined as

lim
n→∞

n
∑

k=1

f(pk) ·∆xk = lim
n→∞

(

f(p1) ·∆x1 + f(p2) ·∆x2 + · · ·+ f(pn) ·∆xn

)

= lim
‖P‖→0

n
∑

k=1

f(pk) ·∆xk

and it is denoted by
∫

b

a

f(x) dx.

The sum
n
∑

k=1

f(pk) ·∆xk is called a Riemann sum in honor of the German mathematician Bernhard Riemann

(1826-1866), who developed the above ideas in full generality. The symbol

∫

is called the integral sign. It is an

elongated capital S, of the kind used in the 1600s and 1700s. The letter S stands for the summation performed
in computing a Riemann sum. The numbers a and b are called the lower and upper limits of integration,
respectively. The function f(x) is called the integrand and the symbol dx is called the differential of x. You can



think of the dx as representing what happens to the term ∆x in the limit, as the size ∆x of the subintervals
gets closer and closer to 0.

Note: The role of x in a definite integral is the one of a dummy variable. In fact,

∫

b

a

x2 dx and

∫

b

a

t2 dt

have the same meaning. They represent the same number.

Note: We recall from Chapter 3 that a limit does not necessarily exist. However:

Theorem: Let f(x) be a continuous function on the interval [a, b] then

∫

b

a

f(x) dx exists. That is, the

limit used in the definition of the definite integral exists.


