MA123 Exam 2

March 5 2008

NAME		Section
	Problem	Answer
	1	
	2	a b c d e
	3	a b c d e
	4	a b c d e
	5	a b c d e
	6	a b c d e
	7	a b c d e
	8	a b c d e
	9	a b c d e
	10	a b c d e
	11	a b c d e
	12	a b c d e
	13	a b c d e
	14	a b c d e
	15	a b c d e

Instructions. Circle your answer in ink on the page containing the problem and on the cover sheet. After the exam begins, you may not ask a question about the exam. Be sure you have all pages (containing 15 problems) before you begin. For grading use:

Number of problems correct: _____/15

SCORE: _____/100

NAME_____

1. If
$$f(x) = \frac{-x}{x^2 - 1}$$
 then $f'(x) =$
(a) $\frac{-x^2 - 1}{(x^2 - 1)^2}$
(b) $\frac{1}{2x}$
(c) $\frac{-x^2 - 1}{x^2 - 1}$
(d) $\frac{x^2 + 1}{x^2 - 1}$
(e) $\frac{x^2 + 1}{(x^2 - 1)^2}$
2. If $F(s) = \sqrt{2s + 2}$, find $F'(1)$.
(a) $\frac{1}{2}$
(b) $\frac{1}{2\sqrt{2}}$
(c) $\frac{1}{\sqrt{2}}$
(d) $\frac{3}{2\sqrt{2}}$
(e) $\frac{3}{2}$

3. If $g(t) = \frac{1}{t^2+1}$, then the slope of the tangent line to the graph of g(t) at t = 3 is

- (a) $-\frac{1}{25}$ (b) $-\frac{2}{25}$ (c) $-\frac{1}{50}$ (d) $-\frac{3}{50}$ (e) $-\frac{4}{25}$

4. If
$$R(x) = (x-2)(x^2-2)(x^3-2)$$
, find $R'(2)$.

- (a) 0
- (b) 12
- (c) 48
- (d) -8
- (e) -6
- 5. Suppose f(t) = H(G(t)) and H(3) = 5, H'(3) = 4, G(2) = 3, and G'(2) = 7. Find f'(2).
 - (a) 12
 - (b) 35
 - (c) 28
 - (d) 15
 - (e) 43
- 6. If $G(s) = u(s^2)$ and u(1) = 10, u'(1) = 4, u(-1) = 7, and u'(-1) = 2, then G'(-1) =
 - (a) -20
 - (b) 4
 - (c) 10
 - (d) 2
 - (e) -8

- 7. Let $f(x) = |x^2 1| + 2$. Find the minimum of f(x) on the interval [-3, 3].
 - (a) 3
 - (b) 0
 - (c) 1
 - (d) 2
 - (e) −1
- 8. Let $Q(t) = t^2$. Find a value A such that the average rate of change of Q(t) from 1 to A equals the instantaneous rate of change of Q(t) at t = 2A.
 - (a) 1
 - (b) $\frac{1}{3}$
 - (c) $\frac{1}{4}$
 - (d) $\frac{1}{5}$
 - (e) Does not exist
- 9. Suppose the derivative of a function g(x) is given by $g'(x) = x^2 1$. Find all intervals on which g(x) is increasing.
 - (a) $(-\infty,\infty)$
 - (b) (-1,1)
 - (c) $(-\infty, -1)$ and $(1, \infty)$
 - (d) $(0,\infty)$
 - (e) $(-\infty, 0)$

- 10. Suppose $f(t) = 2t^3 9t^2 + 12t + 31$. Find the value of t in the interval [0,3] where f(t) takes on its minimum.
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) Neither the maximum nor the minimum exists on the given interval.
- 11. Suppose that f(x) = xg(x), and for all positive values of x the function g(x) is negative (i.e., g(x) < 0) and decreasing. Which of the following is true for the function f(x)?
 - (a) f(x) is negative and decreasing for all positive values of x.
 - (b) f(x) is positive and increasing for all positive values of x.
 - (c) f(x) is negative and increasing for all positive values of x.
 - (d) f(x) is positive and decreasing for all positive values of x.
 - (e) None of the above

12. If
$$Q(s) = s^7 + 1$$
, find

$$\lim_{h\to 0} \frac{Q(1+h)-Q(1)}{h}$$

- (a) 2
- (b) 5
- (c) 6
- (d) 7
- () 0
- (e) 8

13. Suppose $f(t) = \frac{F(t)}{t}$ and F(1) = 2, F'(1) = 6. Find f'(1).

- (a) 2
- (b) 4
- (c) 1
- (d) -4
- (e) −1
- 14. If the line y = 9 + 3(x 4) is tangent to the graph of G(x) at x = 4 and G(x) is differentiable at x = 4, then G(4) G'(4) equals
 - (a) 3
 - (b) 4
 - (c) 5
 - (d) 6
 - (e) 9
- 15. Suppose the derivative of H(s) is given by $H'(s) = s^2(s+1)$. Find the value of s in the interval [-100, 100] where H(s) takes on its minimum.
 - (a) -100
 - (b) -1
 - (c) 0
 - (d) 1
 - (e) 100