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More Population Models

From: Simple Mathematical Models with Very Complicated Dynamics

“First-order difference equations arise in many contexts
in the biological, economic and social sciences. Such
equations, even though simple and deterministic, can
exhibit a surprising array of dynamical behaviour, from
stable points, to a bifurcating hierarchy of stable cycles,
to apparently random fluctuations. There are
consequently many fascinating problems, some concerned
with delicate mathematical aspects of the fine structure
of the trajectories, and some concerned with practical
implications and applications.”

Robert M. May, Nature (1976)
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More Population Models

Restricted Population Growth
The Beverton-Holt Recruitment Model
The Discrete Logistic Equation
Ricker Logistic Equation

When are discrete time models appropriate?

when studying seasonally breeding populations with
non-overlapping generations where the population size at one
generation depends on the population size of the previous
generation. (Many insects and plants reproduce at specific
time intervals or times of the year.)

when studying populations censused at intervals.
(These are the so-called metered models.)

The exponential (Malthusian) growth model described earlier fits
into this category: Nt+1 = RNt .

We denote the population size at time t by Nt , t = 0, 1, 2, . . . To
model how the population size at generation t + 1 is related to the
population size at generation t, we write Nt+1 = f (Nt), where
the function f (updating function) describes the density
dependence of the population dynamics.
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A recursion of the form given before is called a first-order recursion
because, to obtain the population size at time t + 1, only the
population size at the previous time step t needs to be known.

A recursion is also called a difference equation or an iterated map.

The name difference equation comes from writing the dynamics
in the form Nt+1 − Nt = g(Nt), which allows us to track
population size changes from one time step to the next.

The name iterated map refers to the recursive definition.

When we study population models, we are frequently interested in
asking questions about the long-term behavior of the population:

Will the population size reach a constant value?
Will it oscillate predictably?

Will it fluctuate widely without any recognizable patterns?
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In the three examples that follow

Beverton-Holt Recruitment Model,

Discrete Logistic Equation,

Ricker Logistic Equation,

we will see that discrete-time population models show very rich
and complex behavior.

Earlier, we discussed the exponential growth model defined by the
recursion Nt+1 = RNt with N0 = population size at time 0.

When R > 1, the population size will grow indefinitely, if N0 > 0.

Such growth, called density-independent growth, is biologically
unrealistic. As the size of the population increases, individuals will
start to compete with each other for resources, such as food or
nesting sites, thereby reducing population growth.

We call population growth that depends on population density
density-dependent growth.
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The Beverton-Holt Recruitment Model

To find a model that incorporates a reduction in growth when the
population size gets large, we start with the ratio of successive
population sizes in the exponential growth model and assume N0 > 0:

Nt

Nt+1
=

1

R
.

The ratio Nt/Nt+1 is a constant. If we graphed this ratio as a
function of the current population size Nt , we would obtain a
horizontal line in a coordinate system in which Nt is on the
horizontal axis and the ratio Nt/Nt+1 is on the vertical axis.

Note that as long as the parent-offspring ratio Nt/Nt+1 is less than
1, the population size increases, since there are fewer parents than
offspring. Once the ratio is equal to 1, the population size stays
the same from one time step to the next. When the ratio is greater
than 1, the population size decreases.
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To model the reduction in growth when the population size gets
larger, we drop the assumption that the parent-offspring ratio
Nt/Nt+1 is constant and assume instead that the ratio is an
increasing function of the population size Nt . That is, we replace
the constant 1/R by a function that increases with Nt . The
simplest such function is linear.

Nt

Nt+1
=

1

R
+

1− 1

R
K

Nt

The population density where the parent-offspring
ratio is equal to 1 is of particular importance, since
it corresponds to the population size, which does
not change from one generation to the next.
We call this population size the carrying capacity and denote it by
K , where K is a positive constant.
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If we solve for Nt+1 we obtain

Nt+1 =
RNt

1 +
R − 1

K
Nt

This recursion is known as the Beverton-Holt recruitment curve.

We have two fixed points when R > 1: the fixed point N̂ = 0,
which we call trivial, since it corresponds to the absence of the
population, and the fixed point N̂ = K , which we call nontrivial,
since it corresponds to a positive population size.

One can show that, when K > 0, R > 1, and N0 > 0, we have that

lim
t−→∞

Nt = K .
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Possible Gen-Ed Project?

The Beverton-Holt stock recruitment model (1957) was used,
originally, in fishery models. It is a special case (with b = 1) of the
following more general model: the Hassell equation.

The Hassell equation (1975) takes into account intraspecific
competition, more specifically scramble competition1, and takes
the form

Nt+1 =
R0Nt

(1 + kNt)b
.

We have under-compensation for 0 < b < 1;
we have exact compensation for b = 1;
we have over-compensation for 1 < b.

1In ecology, scramble competition refers to a situation in which a resource is
accessible to all competitors.
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The Discrete Logistic Equation

The most popular discrete-time single-species model is the discrete
logistic equation, whose recursion is given by

Nt+1 = Nt

[
1 + R

(
1− Nt

K

)]
where R and K are positive constants. R is called the growth
parameter and K is called the carrying capacity.

This model of population growth exhibits very complicated dynamics,
described in an influential review paper by Robert May (1976).

We first rewrite the model in what is called the canonical form

xt+1 = r xt(1− xt)

where r = 1 + R and xt =
R

K (1 + R)
Nt .

http://www.ms.uky.edu/˜ma137 Lecture 11



11/18

More Population Models

Restricted Population Growth
The Beverton-Holt Recruitment Model
The Discrete Logistic Equation
Ricker Logistic Equation

Advantages

The advantage of this canonical form is threefold:

(1) The recursion xt+1 = r xt(1− xt) is simpler;

(2) instead of two parameters, R and K , there is just one, r ;

(3) the quantity xt =
R

K (1 + R)
Nt is dimensionless.

What does dimensionless mean? The original variable Nt has units

(or dimension) of number of individuals; the parameter K has the

same units. Dividing Nt by K , we see that the units cancel and we

say that the quantity xt is dimensionless. The parameter R does not

have a dimension, so multiplying Nt/K by R/(1 + R) does not

introduce any additional units. A dimensionless variable has the

advantage that it has the same numerical value regardless of what

the units of measurement are in the original variable.

http://www.ms.uky.edu/˜ma137 Lecture 11



12/18

More Population Models

Restricted Population Growth
The Beverton-Holt Recruitment Model
The Discrete Logistic Equation
Ricker Logistic Equation

Reduction to the Canonical Form

Nt+1 = Nt

[
1 + R

(
1− Nt

K

)]
= Nt

[
(1 + R)− R

K
Nt

]
= Nt(1 + R)

[
1− R

K (1 + R)
Nt

]
⇐⇒

1

1 + R
Nt+1 = Nt

[
1− R

K (1 + R)
Nt

]
⇐⇒

R

K (1 + R)
Nt+1 = (1 + R)

R

K (1 + R)
Nt

[
1− R

K (1 + R)
Nt

]
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1 < r < 4

Notice that we can write xt+1 = r xt(1− xt) as xt+1 = f (xt),
where the function

f (x) = r x(1− x)

is an upside-down parabola, since r > 1.

In order to make sure that f (xt) ∈ (0, 1) for all t, we also require
that r/4 < 1, or r < 4. In fact, the maximum value of f (x) occurs
at x = 1/2, and f (1/2) = r/4.

Hence we need to impose the assumption that 1 < r < 4.
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Fixed Points of xt+1 = r xt(1− xt)

We first compute the fixed points of the discrete logistic equation
written in standard form.

We need to solve x = rx(1− x).

Solving immediately yields the solution x̂ = 0. If x ̸= 0, we divide
both sides by x and find that

1 = r(1− x), or x̂ = 1− 1

r
.

Provided that r > 1, both fixed points are in [0, 1).

The fixed point x̂ = 0 corresponds to the fixed point N̂ = 0, which
is why we call x̂ = 0 a trivial equilibrium. When x̂ = 1− 1/r we
obtain that N̂ = K is the other fixed point.

http://www.ms.uky.edu/˜ma137 Lecture 11



15/18

More Population Models

Restricted Population Growth
The Beverton-Holt Recruitment Model
The Discrete Logistic Equation
Ricker Logistic Equation

Long-term Behavior of xt+1 = r xt(1− xt)

The long-term behavior of the discrete logistic equation is very
complicated. We simply list the different cases.

If 1 < r < 3 and x0 ∈ (0, 1), xt converges to the fixed point 1− 1/r .

Increasing r to a value between 3 and 3.449..., we see that xt
settles into a cycle of period 2. That is, for t large enough, xt
oscillates back and forth between a larger and a smaller value.

For r between 3.449... and 3.544..., the period doubles: A cycle of
period 4 appears for large enough times.

Increasing r continues to double the period: A cycle of period 8 is
born when r = 3.544..., a cycle of period 16 when r = 3.564...,
and a cycle of period 32 when r = 3.567....

This doubling of the period continues until r reaches a value of
about 3.57, when the population pattern becomes chaotic.
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Illustrations Using Applets built with GeoGebra

Convergence to the fixed point Cycle of period two

Cycle of period four Chaotic behavior
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Ricker Logistic Equation
An iterated map that has the same (desirable) properties as the
logistic map but does not admit negative population sizes
(provided that N0 is positive) is Rickers curve. The recursion,
called the Ricker logistic equation, is given by

Nt+1 = Nt exp

[
R

(
1− Nt

K

)]
where R and K are positive parameters.

As in the discrete logistic model, R is the growth parameter and K
is the carrying capacity. The fixed points are N̂ = 0 and N̂ = K .

The Ricker logistic equation shows the same complex dynamics as
the discrete logistic map [convergence to the fixed point for small
positive values of R, periodic behavior with the period doubling as
R increases, and chaotic behavior for larger values of R].
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Final Comments

In Section 5.6 we will analyze in greater details and with more
tools the stability of the equilibria in the previous models.

On our class website there are three applets (created with the
graphic package GeoGebra) that allow us to visualize the
behavior of the previous three models by varying the various
parameters. Please use them! These applets require the latest
version of Java.

What we described in Section 2 could be a great source for
your Final project (which is due on December 4) both in
terms of substantial mathematical component and adequate
biological and/or medical content. Please start thinking about
a possible project!
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