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.. The Sandwich (Squeeze) Theorem

Suppose we want to calculate lim
x→∞

e−x cos(10x).

We soon realize that none of the rules we have learned so far apply.
Although lim

x→∞
e−x = 0, we find that lim

x→∞
cos(10x) does not

exist as the function cos(10x) oscillates between −1 and 1.

We need to employ some other techniques. One of these
techniques is to use the Squeeze (Sandwich) Theorem.
.
Sandwich (Squeeze) Theorem
..

......

Consider three functions f (x), g(x) and h(x) and suppose for all x
in an open interval that contains c (except possibly at c) we have

f (x) ≤ g(x) ≤ h(x).

If lim
x→c

f (x) = L = lim
x→c

h(x) then lim
x→c

g(x) = L.
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From the inequality

−1 ≤ cos(10x) ≤ 1

it follows that (as e−x > 0, always)

−e−x ≤ e−x cos(10x) ≤ e−x

Then, since

lim
x→∞

(−e−x) = 0 = lim
x→∞

e−x

our function g(x) = e−x cos(10x)
is squeezed between the functions
f (x) = −e−x and h(x) = e−x ,
which both go to 0 as x tends to
infinity.

x

y

e−x

−e−x

e−x cos(10x)

So by the Squeeze Theorem it follows that

lim
x→∞

e−x cos(10x) = 0.
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.. Example 1: (Online Homework HW10, # 2)

Suppose −8x − 22 ≤ f (x) ≤ x2 − 2x − 13.

Use this to compute lim
x→−3

f (x).
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.. Example 2: (Neuhauser, Example # 1, p. 114)

Find lim
x→0

x2 sin

(
1

x

)
.

x

y
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x

y

http://www.ms.uky.edu/˜ma137 Lecture 16



6/20

More About Limits
The Sandwich (Squeeze) Theorem
Trigonometric Limits
Digression on Trigonometric and Exponential Functions

.. Fundamental Trigonometric Limits

The following two trigonometric limits are important for developing
the differential calculus for trigonometric functions:

.

......
lim
x→0

sin x

x
= 1 lim

x→0

1− cos x

x
= 0

Note that the angle x is measured in radians.

We will prove both statements.

The proof of the first statement uses a nice geometric argument
and the sandwich theorem.

The second statement follows from the first.
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..
Proof that lim

x→0

sin x

x
= 1

Since we are interested in the limit as x → 0, we can
restrict the values of x to values close to 0.

We split the proof into two cases, one in which
0 < x < π/2, the other in which −π/2 < x < 0.

Since f (x) = sin x/x is an even function

(indeed, it is the quotient of two odd functions!)

we only need to study the case 0 < x < π/2.

In this case, both x and sin x are positive.
x

A BO

1

D
C

cos x

si
n
x

ta
n
x

We draw the unit circle together with the triangles OAD and OBC . The
angle x is measured in radians. Since OB = 1, we find that

arc length of BD = x OA = cos x AD = sin x BC = tan x .

Furthermore the picture illustrates that

area of OAD ≤ area of sector OBD ≤ area of OBC
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The area of a sector of central angle x (in radians) and radius r is 1
2 r

2x .

Therefore,
1

2
cos x · sin x ≤ 1

2
· 12 · x ≤ 1

2
· 1 · tan x .

Dividing this pair of inequalities by 1/2 sin x yields

cos x ≤ x

sin x
≤ 1

cos x
.

Solving now for sin x/x we obtain

cos x ≤ sin x

x
≤ 1

cos x
.

We can now take the limit as x → 0+ and find that

lim
x→0+

cos x = 1 lim
x→0+

1

cos x
= 1.

Finally the Sandwich Theorem yields lim
x→0+

sin x

x
= 1.

By symmetry we also have that lim
x→0−

sin x

x
= 1.
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..
Proof that lim

x→0

1− cos x

x
= 0

Multiplying both numerator and denominator of f (x) = (1− cos x)/x
by 1 + cos x , we can reduce the second statement to the first:

lim
x→0

1− cos x

x
= lim

x→0

1− cos x

x
· 1 + cos x

1 + cos x

= lim
x→0

1− cos2 x

x(1 + cos x)

= lim
x→0

sin2 x

x(1 + cos x)

= lim
x→0

sin x

x
· lim
x→0

sin x

1 + cos x
= 1 · 0 = 0
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.. Example 3: (Online Homework HW10, # 7)

Evaluate lim
θ→0

sin(4θ) sin(8θ)

θ2
.
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.. Example 4: (Online Homework HW10, # 10)

Evaluate lim
x→0

tan(5x)

tan(6x)
.
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.. Example 5: (Neuhauser, Example 3(c), p. 118)

Evaluate lim
x→0

sec x − 1

x sec x
.
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.. Example 6: (Online Homework HW10, # 13)

Evaluate lim
x→π/4

3(sin x − cos x)

5 cos(2x)
.
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.. Example 7: (Online Homework HW10, # 14)

A semicircle with diameter PQ sits on an isosceles triangle PQR to
form a region shaped like an ice cream cone, as shown in the
figure. If A(θ) is the area of the semicircle and B(θ) is the area of
the triangle, find

lim
θ→0+

A(θ)

B(θ)

A(θ)

B(θ)

θ

P Q

R
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.. Aside: Trigonometric and Exponential Functions

We will sometimes use the double angle formulas

cos(2α) = cos2 α− sin2 α
= 2 cos2 α− 1
= 1− 2 sin2 α

and
sin(2α) = 2 sinα cosα

which are special cases of the following addition formulas

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ.

What about sin(α/2) and cos(α/2)? With some work

cos(α/2) = ±
√

1 + cosα

2
sin(α/2) = ±

√
1− cosα

2

(the sign (+ or −) depends on the quadrant in which
α

2
lies.)

Is there a ‘simple’ way of remembering the above formulas?
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.. Euler’s Formula
Euler’s formula states that, for any real number x,

e ix = cos x + i sin x ,

where i is the imaginary unit (i2 = −1).

For any α and β, using Euler’s formula, we have

cos(α+ β) + i sin(α+ β) = e i(α+β)

= e iα · e iβ

= (cosα+ i sinα) · (cosβ + i sinβ)

= (cosα cosβ + i2 sinα sinβ)

+i(sinα cosβ + cosα sinβ).

Thus, by comparing the terms, we obtain

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ.
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.. Approximating cos x

Consider the graph of the polynomial

T2n(x) = 1− x2

2!
+

x4

4!
− · · ·+ (−1)n−1 x2(n−1)

(2n − 2)!
+ (−1)n

x2n

(2n)!
.

As n increases, the graph of T2n(x) appears to approach the one of cos x .

This suggests that we can approximate cos x with T2n(x) as n → ∞.

1

y = 1

y = 1 − x2

2!

y = 1 − x2

2!
+ x4

4!

y = 1 − x2

2!
+ x4

4!
− x6

6!

y = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!

y = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− x10

10!

y = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− x10

10!
+ x12

12!

y = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− x10

10!
+ x12

12!
− x14

14!
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.. Approximating sin x

Consider the graph of the polynomial

T2n+1(x) = x − x3

3!
+

x5

5!
− · · ·+ (−1)n−1 x2n−1

(2n − 1)!
+ (−1)n

x2n+1

(2n + 1)!
.

As n increases, the graph of T2n+1(x) appears to approach the one of

sin x . This suggests that we can approximate sin x with T2n+1(x) as n → ∞.

1

y = x

y = x − x3

3!

y = x − x3

3!
+ x5

5!

y = x − x3

3!
+ x5

5!
− x7

7!

y = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!

y = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− x11

11!

y = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− x11

11!
+ x13

13!

y = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− x11

11!
+ x13

13!
− x15

15!
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.. Approximating ex

Consider the graph of the polynomial

Tn(x) = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn−1

(n − 1)!
+

xn

n!
.

As n increases, the graph of Tn(x) appears to approach the one of ex .

This suggests that we can approximate ex with Tn(x) as n → ∞.

1

y = 1

y = 1 + x

y = 1 + x + x2

2!

y = 1 + x + x2

2!
+ x3

3!

y = 1 + x + x2

2!
+ x3

3!
+ x4

4!

y = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!

y = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!

y = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
+ x7

7!
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.. Idea of Why Euler’s Formula Works

To justify Euler’s formula, we use the polynomial approximations for ex ,
cos x and sin x that we just discussed. We start by approximating e ix :

e ix = 1 + ix +
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+

(ix)6

6!
+

(ix)7

7!
+

(ix)8

8!
+ · · ·

= 1 + ix − x2

2!
− ix3

3!
+

x4

4!
+

ix5

5!
− x6

6!
− ix7

7!
+

x8

8!
+ · · ·

=

(
1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
+ · · ·

)
+ i

(
x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

)
= cos x + i sin x

Curiosity: From Euler’s formula with x = π we obtain

e iπ + 1 = 0

which involves five interesting math values in one short equation.
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