Theory Examples (Optional: Taylor Polynomials)

MA 137 - Calculus 1 with Life Science Applications **Linear Approximations** (Section 4.8)

Alberto Corso

*⟨*alberto.corso@uky.edu*⟩*

Department of Mathematics University of Kentucky

October 28, 2015

Theory Examples (Optional: Taylor Polynomials)

2/12

 $y = L(x)$

 $(a, f(a))$

 $\overline{0}$

Tangent Line Approximation

Assume that $y = f(x)$ is differentiable at $x = a$; then

$$
L(x) = f(a) + f'(a)(x - a)
$$

is the tangent line approximation, or **linearization**, of f at $x = a$.

Geometrically, the linearization of f at $x = a$ is the equation of the tangent line to the graph of $f(x)$ at the point $(a, f(a))$.

If *|x − a|* is sufficiently small, then *f* (*x*) can be linearly approximated by $L(x)$; that is, $y = f(x)$

 $f(x) \approx f(a) + f'(a)(x - a)$.

This approximation is illustrated in the picture on the right:

- **(a)** Find the linear approximation of $f(x) = \sqrt{x}$ at $x = a$.
- **(b)** use your answer in (a) to find an approximate value of *[√]* 26.

Find the linearization $L(x)$ of the function $g(x) = x f(x^2)$ at $x = 2$ given the following information:

 $f(2) = 1$ $f'(2) = 10$ $f(4) = 5$ $f'(4) = -2$

Example 3: (Nuehauser, Problem # 34, p. 199)

Theory Examples (Optional: Taylor Polynomials)

Plant Biomass: Suppose that a certain plant is grown along a gradient ranging from nitrogen-poor to nitrogen-rich soil.

Experimental data show that the average mass per plant grown in a soil with a total nitrogen content of 1000 mg nitrogen per kg of soil is 2.7 g and the rate of change of the average mass per plant at this nitrogen level is 1.05*×*10*−*³ g per mg change in total nitrogen per kg soil.

Use a linear approximation to predict the average mass per plant grown in a soil with a total nitrogen content of 1100 mg nitrogen per kg of soil.

Suppose $N = N(t)$ represents a population size at time t and the rate of growth as a function of *N* is *g*(*N*).

Find the linear approximation of the growth rate at $N = 0$.

[Hint: We can assume that $g(0) = 0$. Indeed, when the population has size $N = 0$, its grow rate will be zero.]

6/12 [**Remark:** Your answer should show that for small population sizes, the population grows approximately exponentially.]

Linear Approximations Theory Examples (Optional: Taylor Polynomials) Example 5: (Neuhauser, Problem $# 33$, p. 199)

Plant Biomass: Suppose that the specific growth rate of a plant is 1% ; that is, if $B(t)$ denotes the biomass at time t , then

$$
\frac{1}{B(t)}\frac{dB}{dt} = 0.01
$$

Suppose that the biomass at time $t = 1$ is equal to 5 grams.

Use a linear approximation to compute the biomass at time $t = 1.1$.

Examples (Optional: Taylor Polynomials)

Higher Order Approximations

The tangent linear approximation $L(x) = f(a) + f'(a)(x - a)$ is the best first-degree (linear) approximation to $f(x)$ near $x = a$ because *f* (*x*) and *L*(*x*) have the same value and the same rate of change at *a*

Theory

$$
L(a) = f(a) \qquad L'(a) = f'(a).
$$

For a better approximation than a linear one, let's try to find better approximations by looking for an *n*th-degree polynomial

$$
T_n = c_0 + c_1(x - a) + c_2(x - a)^2 + \cdots + c_n(x - a)^n
$$

such that T_n and its first n derivatives have the same value at $x = a$ as *f* and its first *n* derivatives at $x = a$. We can show that the resulting polynomial is

$$
T_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n.
$$

8/12 It is called the *n***th-degree Taylor polynomial** of *f* centered at *x* = *a*.

Consider the graph of the polynomial

$$
T_{2n}(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots+(-1)^{n-1}\frac{x^{2(n-1)}}{(2n-2)!}+(-1)^n\frac{x^{2n}}{(2n)!}.
$$

As *n* increases, the graph of $T_{2n}(x)$ appears to approach the one of cos *x*. This suggests that we can approximate cos *x* with $T_{2n}(x)$ as $n \to \infty$.

Consider the graph of the polynomial

$$
T_{2n+1}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-1)^n \frac{x^{2n+1}}{(2n+1)!}.
$$

As *n* increases, the graph of $T_{2n+1}(x)$ appears to approach the one of sin *x*. This suggests that we can approximate sin *x* with $T_{2n+1}(x)$ as $n \to \infty$.

http://www.ms.uky.edu/˜ma137 Lecture 27

$$
T_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots + \frac{x^{n-1}}{(n-1)!} + \frac{x^n}{n!}.
$$

As *n* increases, the graph of $T_n(x)$ appears to approach the one of e^x . This suggests that we can approximate e^x with $T_n(x)$ as $n \to \infty$.

Examples (Optional: Taylor Polynomials)

Theory

Example 6: (Bloomberg Business, 10/23/15)

Google parent Alphabet Inc. reached a record share price a day after reporting better-than-projected quarterly revenue and profit fueled by increased ad sales and a tighter lid on costs. [...] The actual figure that the company announced for the share buyback was unusually specific: \$5,099,019,513.59. Turns out, those numbers correspond to the square root of 26, or the number of letters in the English alphabet.

Let $f(x) = \sqrt{x}$ and $a = 25$. The 5th-degree Taylor polynomial of *f* centered at 25 can be shown to be $T₅$

$$
T_5(x) = 5 + \frac{1}{10}(x - 25) - \frac{1}{1,000}(x - 25)^2 + \frac{1}{50,000}(x - 25)^3 - \frac{1}{2,000,000}(x - 25)^4 + \frac{1}{71,428,571.43}(x - 25)^5
$$

We can then check that

— *· · ·* —

 $\sqrt{26}$ ≈ $T_5(26) = 5 + \frac{1}{10}$ $\frac{1}{10} - \frac{1}{1,0}$ $\frac{1}{1,000} + \frac{1}{50,00}$ $\frac{1}{50,000} - \frac{1}{2,000}$ $\frac{1}{2,000,000} + \frac{1}{71,428,}$ $\frac{1}{71,428,571.43}$ = 5.099019514

This means that we overestimated Alphabet Inc. buyback by 41¢.