MA 137 – Calculus 1 with Life Science Applications **The Product and Quotient Rule** and the Derivatives of Rational and Power Functions (Section 4.4)

Department of Mathematics University of Kentucky

Rules Examples Proofs

Basic Rules (cont'd)

Theorem

Suppose f(x) and g(x) are differentiable functions. Then the following relationships hold:

4.
$$\frac{d}{dx}[f(x) \cdot g(x)] = \frac{d}{dx}[f(x)] \cdot g(x) + f(x) \cdot \frac{d}{dx}[g(x)]$$

(in prime notation) $(fg)'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

5.
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{d}{dx} [f(x)] \cdot g(x) - f(x) \cdot \frac{d}{dx} [g(x)]}{[g(x)]^2}$$
(in prime notation) $\left(\frac{f}{g} \right)'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$

Rules Examples Proofs

The Power Rule for Negative Exponents

The quotient rule allows us to extend the power rule to the case where the exponent is a negative integer:

Theorem

If $f(x) = x^{-n}$, where n is a positive integer, then $f'(x) = -nx^{-n-1}$.

Proof: We write
$$f(x) = \frac{1}{x^n}$$
 and use the quotient rule
$$f'(x) = \frac{0 \cdot x^n - 1 \cdot nx^{n-1}}{[x^n]^2} = -\frac{nx^{n-1}}{x^{2n}} = -nx^{(n-1)-2n} = -nx^{-n-1}.$$

There is a general form of the power rule in which the exponent can be any real number. In Section 4.4, we give the proof for the case when the exponent is rational; we prove the general case in Section 4.7.

Theorem (General Form)

If $f(x) = x^r$, where r is any real number, then $f'(x) = r x^{r-1}$.

Rules Examples Proofs

Example 1: (Neuhauser, Example # 1, p. 161)

Differentiate $f(x) = (3x + 1)(2x^2 - 5)$.

Rules Examples Proofs

Example 2: (Online Homework HW12, # 17)

Differentiate $Y(u) = (u^{-2} + u^{-3})(u^5 + u^2).$

Rules Examples Proofs

Example 3: (Neuhauser, Problem # 39, p. 166)

Assume that f(x) is differentiable.

Find an expression for the derivative of

$$y = -5x^3f(x) - 2x$$

at x = 1, assuming that f(1) = 2 and f'(1) = -1.

Rules Examples Proofs

Example 4: (Online Homework HW12, # 19)

Differentiate
$$f(x) = \frac{ax+b}{cx+d}$$
,

where a, b, c, and d are constants and $ad - bc \neq 0$.

Rules Examples Proofs

Example 5: (Online Homework HW12, # 22)

Find an equation of the tangent line to the given curve at the specified point:

$$y = \frac{\sqrt{x}}{x+3}$$
 $P(4, 2/7).$

Rules Examples Proofs

Example 6: (Neuhauser, Example # 6, p. 163)

Differentiate the Monod growth function

$$f(R) = \frac{aR}{k+R}$$

where a and k are positive constants.

Rules Examples Proofs

Example 7: (Neuhauser, Problem # 84, p. 167)

Assume that f(x) is differentiable.

Find an expression for the derivative of

$$y = \frac{f(x)}{x^2 + 1}$$

at x = 2, assuming that f(2) = -1 and f'(2) = 1.

Proofs:

4. We use the definition of the derivative, rewrite the numerator in a 'tricky' way and use the limit laws and the continuity of the functions.

$$(fg)'(x) \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{(fg)(x+h) - (fg)(x)}{h} \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} \frac{\text{trick}}{h} \lim_{h \to 0} \frac{f(x+h)g(x+h) \left[-f(x)g(x+h) + f(x)g(x+h)\right] - f(x)g(x)}{h} \\ = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{h} g(x+h) + f(x) \frac{g(x+h) - g(x)}{h} \right] \\ \stackrel{\text{rule}}{=} \left[\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \right] \left[\lim_{h \to 0} g(x+h) \right] + f(x) \left[\lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \right] \\ \stackrel{\text{cont.}}{=} f'(x)g(x) + f(x)g'(x).$$

Rules Examples Proofs

5. We use the definition of the derivative, rewrite the numerator in a 'tricky' way and use the limit laws and the continuity of the functions.
 (f/g)'(x) =

$$\stackrel{\text{def}}{=} \lim_{h \to 0} \frac{(f/g)(x+h) - (f/g)(x)}{h} \\ \stackrel{\text{def}}{=} \lim_{h \to 0} \frac{\frac{f(x+h)}{g(x+h)} - \frac{f(x)}{g(x)}}{h} = \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x+h)}{hg(x)g(x+h)} \\ \stackrel{\text{trick}}{=} \lim_{h \to 0} \frac{f(x+h)g(x) - f(x)g(x) + f(x)g(x)}{hg(x)g(x+h)} - f(x)g(x+h) \\ = \lim_{h \to 0} \left[\frac{f(x+h) - f(x)}{hg(x+h)} - f(x) \frac{g(x+h) - g(x)}{hg(x)g(x+h)} \right] \\ \stackrel{\text{rule}}{=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \cdot \lim_{h \to 0} \frac{1}{g(x+h)} - \lim_{h \to 0} \frac{f(x)}{g(x)g(x+h)} \cdot \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \\ \stackrel{\text{cont.}}{=} f'(x) \frac{1}{g(x)} - \frac{f(x)}{[g(x)]^2} g'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$