MA 137 — Calculus 1 with Life Science Applications Derivatives of Logarithmic Functions and Logarithmic Differentiation (Section 4.10)

Department of Mathematics University of Kentucky

The Derivative of the Natural Logarithmic Function

Theorem

The function $\ln x$ is differentiable for all x > 0, and $\frac{d}{dx} \ln x = \frac{1}{x}$. In particular, if g(x) is a differentiable function, it follows from the chain rule that

$$\frac{d}{dx} \ln g(x) = \frac{1}{g(x)} g'(x).$$

We can use the derivative of e^x and the relationship between the exponential and the natural logarithmic functions to find the derivative of the function ln x. Namely, we start by taking the derivative with respect to x of both sides of $e^{\ln x} = x$. We obtain

$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x \quad \Longleftrightarrow \quad e^{\ln x}\frac{d}{dx}\ln x = 1 \quad \Longleftrightarrow \quad \frac{d}{dx}\ln x = \frac{1}{e^{\ln x}} = \frac{1}{x}$$

Alternative Proof

We use the formal definition of the derivative and $e^x = \lim_{u \to \infty} \left(1 + \frac{x}{u}\right)^u$

$$\frac{d}{dx} \ln x \quad \stackrel{\text{def}}{=} \quad \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h}$$

$$\stackrel{\text{In prop.}}{=} \quad \lim_{h \to 0} \frac{1}{h} \ln\left(\frac{x+h}{x}\right)$$

$$= \quad \lim_{h \to 0} \frac{1}{x} \frac{x}{h} \ln\left(1 + \frac{1}{x/h}\right) \qquad u = x/h$$

$$\stackrel{\text{laws}}{=} \quad \frac{1}{x} \lim_{u \to \infty} \ln\left(1 + \frac{1}{u}\right)^{u}$$

$$\stackrel{\text{cont.}}{=} \quad \frac{1}{x} \ln\left[\lim_{u \to \infty} \left(1 + \frac{1}{u}\right)^{u}\right]$$

$$= \quad \frac{1}{x} \ln e = \frac{1}{x}$$

The Derivative of ANY Logarithmic Function

Theorem

The function
$$\log_a x$$
 is differentiable for $x > 0$, and $\frac{d}{dx} \log_a x = \frac{1}{(\ln a)x}$.

In particular, if g(x) is a differentiable function, it follows from the chain rule that

$$\frac{d}{dx}\log_a g(x) = \frac{1}{(\ln a)g(x)}g'(x).$$

From the base change formula for logarithms we have that

$$\log_a x = \frac{\ln x}{\ln a}$$

Thus it is enough to find the derivative of $\ln x$. Hence the formula.

Derivatives of Logarithmic Functions Logarithmic Differentiation Theory Examples

Example 1: (Nuehauser, Problems # 28/34/52, p. 204)

٠

Find
$$\frac{dy}{dx}$$
 when $y = \ln(1 - x^2)$.
Find $\frac{dy}{dx}$ when $y = [\ln(1 - x^2)]^3$
Find $\frac{dy}{ds}$ when $y = \ln(\ln s)$.

Derivatives of Logarithmic Functions Logarithmic Differentiation Theory Examples

Example 2: (Nuehauser, Problem # 56, p. 204)

Find
$$\frac{dy}{dx}$$
 when $y = \log(3x^2 - x + 2)$.

[Note: $\log = \log_{10}$]

Derivatives of Logarithmic Functions Logarithmic Differentiation Theory Examples

Example 3: (Nuehauser, Problem # 62, p. 204)

Assume that f(x) is differentiable with respect to x. Show that

$$\frac{d}{dx}\ln\left[\frac{f(x)}{x}\right] = \frac{f'(x)}{f(x)} - \frac{1}{x}$$

Logarithmic Differentiation

In 1695, Leibniz introduced logarithmic differentiation, following Johann Bernoulli's suggestion to find derivatives of functions of the form

$$y=[f(x)]^{\times}.$$

Bernoulli generalized this method and published his results two years later.

The **basic idea** is to take logarithms on both sides and then to use implicit differentiation.

Theory Examples

Example 4: (Neuhauser, Example # 12, p. 202)

Find
$$\frac{dy}{dx}$$
 when $y = x^x$.
What about $\frac{d}{dx}[(2x)^{2x}]$?

Example 5: (Neuhauser, Problems # 68/75/76, p. 204)

Use logarithmic differentiation to find the first derivative of the functions

$$y = (\ln x)^{3x}$$
 $y = x^{\cos x}$ $y = (\cos x)^{x}$

Example 6: (Neuhauser, Problem # 77, p. 204)

Use logarithmic differentiation to find the first derivative of the function

$$y = \frac{e^{2x}(9x-2)^3}{\sqrt[4]{(x^2+1)(3x^3-7)}}$$

Power Rule (General Form)

Theorem

Let $f(x) = x^r$, where r is any real number. Then

$$\frac{d}{dx}x^r = rx^{r-1}$$

Proof: We set $y = x^r$ and use logarithmic differentiation to obtain

$$\frac{d}{dx} [\ln y] = \frac{d}{dx} [\ln x^{r}]$$
$$\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} [r \ln x]$$
$$\frac{1}{y} \frac{dy}{dx} = r\frac{1}{x}$$

Solving for dy/dx yields

$$\frac{dy}{dx} = r\frac{1}{x}y = r\frac{1}{x}x^r = rx^{r-1}$$