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First-Order Recursions (Review)
In Chapter 2 we saw that an important biological application of
sequences consists of models of seasonally breeding populations with
nonoverlapping generations where the population size at one generation
depends only on the population size of the previous generation.

The discrete exponential growth model fits into this category.

To this end, we introduced first-order recursions [≡ difference equations
or iterated maps] by setting

xt+1 = f (xt), t = 0, 1, 2, . . .

where f (x) is a function (≡ updating function) that describes the density
dependence of the population dynamics.

The name difference equation comes from writing the dynamics in the form
xt+1 − xt
(t+1)−t

= g(xt )

[where g(x) = f (x) − x], which allows us to track population size changes from one time step to the next.

The name iterated map refers to the recursive definition.
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Fixed Points (≡ Equilibria)

In Chapter 2, we were able to analyze difference equations only
numerically (except for equations describing exponential growth,
which we were able to solve).

We saw that fixed points (or equilibria) played a special role.

A fixed point x̂ satisfies the equation

x̂ = f (x̂)

and has the property that if x0 = x̂ , then xt = x̂ for t = 1, 2, 3, . . ..

We also saw in a number of applications that, under certain
conditions, xt converged to the fixed point as t → ∞ even if x0 ̸= x̂ .

However, back in Chapter 2, we were not able to predict when
such behavior would occur.
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Example 1: (Neuhauser, Example # 1, p. 274)

Find the equilibria of the recursive sequence

xt+1 =
1

4
− 5

4
x2t , t = 0, 1, 2, . . .

What happens to xt as t → ∞ if x0 = −0.9 ?

(You could use for example an Excel spreadsheet.)
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Exponential Growth

Exponential growth in discrete time is given by the recursion

Nt+1 = R Nt , t = 0, 1, 2, . . .

where Nt is the population size at time t and R > 0 is the growth rate.

We assume throughout that N0 ≥ 0, which implies that Nt ≥ 0.

The fixed point of our recursion can be found by solving N = R N.

The only solution of this equation is N̂ = 0, unless R = 1.
If R = 1, then the population size never changes, regardless of N0.

What happens if we start with N0 > 0 and R ̸= 1?

In Chapter 2, we found that

Nt = N0R
t

is a solution of our recursion. Using this fact, we concluded that

Nt −→
{

0 if 0 < R < 1
∞ if R > 1,

as t → ∞.
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We can interpret the behavior of Nt as follows:

If 0 < R < 1 and N0 > 0, then Nt will return to the equilibrium N̂ = 0;

if R ≥ 1 and N0 > 0, then Nt will not return to the equilibrium N̂ = 0
(more precisely, if R = 1, Nt will stay at N0; if R > 1, Nt will go to ∞).

Terminology

We say that N̂ = 0 is stable if 0 < R < 1 and unstable if R > 1.

The case R = 1 is called neutral, since, no matter what the value
of N0 is, Nt = N0 for t = 1, 2, 3, . . .
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Cobwebbing

We can determine graphically whether a fixed point is stable or unstable.

The fixed points of exponential growth recursive sequence are found
graphically where the graphs of Nt+1 = RNt and Nt+1 = Nt intersect.

We see that the two graphs intersect where Nt = 0 only when R ̸= 1.

We can use the two graphs on the left to follow
successive population sizes. Start at N0 on the
horizontal axis. Since N1 = RN0, we find N1 on the
vertical axis, as shown by the solid vertical and
horizontal line segments. Using the line Nt+1 = Nt ,

we can locate N1 on the horizontal axis by the

dotted horizontal and vertical line segments.

Using the line Nt+1 = RNt again, we can find N2 on the vertical axis, as
shown in the figure by the broken horizontal and vertical line segments.
Using the line Nt+1 = Nt once more, we can locate N2 on the horizontal axis
and then repeat the preceding steps to find N3 on the vertical axis, and so on.

This procedure is called cobwebbing.
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In the figure on the left, R > 1, and we see that if N0 > 0, then
Nt will not converge to the fixed point N̂ = 0, but instead will move
away from 0 (and, in fact, will go to infinity as t tends to infinity).

In the figure on the right, 0 < R < 1, we see that if N0 > 0, then
Nt will return to the fixed point N̂ = 0.

http://www.ms.uky.edu/˜ma137 Lecture 34



9/16

Difference Equations: Stability
Theory
Examples

General Case

The general form of a first-order recursion is

xt+1 = f (xt), t = 0, 1, 2, . . .

We assume that the function f is differentiable in its domain.

To find fixed points algebraically, we solve x = f (x).
To find them graphically, we look for points of intersection of
the graphs of xt+1 = f (xt) and xt+1 = xt .

The graphs in the picture intersect more than once, which means
that there are multiple equilibria. We can use the cobwebbing

procedure from the previous subsection to
graphically investigate the behavior of the
difference equation for different initial values.

Two cases are shown in the picture, one starting
at x0,1 and the other at x0,2. We see that xt
converges to different values, depending on the
initial value.

http://www.ms.uky.edu/˜ma137 Lecture 34



10/16

Difference Equations: Stability
Theory
Examples

Stability Criterion

To determine the stability of an equilibrium — that is, whether it is
stable or unstable — we will start at a value that is different from the
equilibrium and check whether the solution will return to the equilibrium.
We allow only initial values that are close to the equilibrium (we call it a
small perturbation). The reason for looking only at small perturbations
is that if there are multiple equilibria and if we start too far away from
the equilibrium of interest, we might end up at a different equilibrium,
not because the equilibrium of interest is unstable, but simply because we
are drawn to another equilibrium.

If we are concerned only with small perturbations, we can approximate

the function f (x) by its linearization at the equilibrium x̂ . Since the slope

of the tangent-line approximation of f (x) at x̂ is given by f ′(x̂), we are

led to the following criterion,

Theorem (Stability Criterion)

An equilibrium x̂ of xt+1 = f (xt) is locally stable if |f ′(x̂)| < 1.
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Proof:

We look at the linearization of f (x) about the equilibrium x̂ and
investigated how a small perturbation affects the future of the solution.
We denote a small perturbation at time t by zt and write

xt = x̂ + zt

Then xt+1 = f (xt) = f (x̂ + zt)

Now, the linear approximation of f (x̂ + zt) at x̂ is L(x̂ + zt) = f (x̂) + f ′(x̂) zt .
Taking this into account, we can approximate xt+1[= x̂ + zt+1] by

x̂ + zt+1 ≈ f (x̂) + f ′(x̂) zt .

Since f (x̂) = x̂ (x̂ is an equilibrium), we find that

zt+1 ≈ f ′(x̂) zt

This approximation reminds of the equation yt+1 = R yt for exponential
growth, where we identify yt with zt and R with f ′(x̂). Since the solution
of yt+1 = R yt is yt = y0R

t and R t → 0 as t → ∞ for |R| < 1, we obtain
the criterion |f ′(x̂)| < 1 for local stability. That is, if |f ′(x̂)| < 1, then the
perturbation zt will converge to ẑ = 0 or, equivalently, xt → x̂ as t → ∞.
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(Again) Example 1: (Neuhauser, Example # 1, p. 274)

Use the stability criterion to characterize the stability of the
equilibria of

xt+1 =
1

4
− 5

4
x2t , t = 0, 1, 2, . . .
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Geometric Considerations

We know from the Stability Criterion that when the slope of the
tangent line to f at the equilibrium x̂ is between −1 and 1, xt
converges to the equilibrium x̂ .
The solution xt approaches the equilibrium in a spiral (thus
exhibiting oscillatory behavior) when the slope of the tangent line
at the equilibrium is negative, whereas it approaches it in one
direction (thus exhibiting nonoscillatory behavior) when the
slope of the tangent line at the equilibrium is positive.
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Example 2: (Neuhauser, Example # 2, p. 275)

Use the stability criterion to characterize the stability of the
equilibria of

xt+1 =
xt

0.1 + xt
, t = 0, 1, 2, . . .
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Example 3: (Neuhauser, Example # 4, p. 276)

Denote by Nt the size of a population at time t, t = 0, 1, 2, . . .
Find all equilibria and determine their stability for the discrete
logistic growth sequence

Nt+1 = Nt

[
1 + R

(
1− Nt

K

)]
where we assume that the parameters R and K are both positive.
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Another Idea for a Possible Project?

Biologist T.S. Bellows investigated the ability of several difference
equations to describe the population dynamics of insects. He found that
the so called Generalized Beverton-Holt model provided the best
description. If xn denotes the population density in the n-th generation,
then the model is of the form

xn+1 =
r xn

1 + xbn
where r is the intrinsic fitness of population and b measures the
abruptness of density dependence.

For three insect species, Bellows found the following parameter estimates:

* Budworm moth: r = 3.5 and b = 2.7;
* Colorado potato beetle: r = 75 and b = 4.8;
* Meadow plant bug: r = 2.2 and b = 1.4.

(a) Use these parameter estimates to determine which population
supports a stable equilibrium.

(b) For the species that do not support a stable equilibrium simulate
their dynamics.
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