FastTrack — MA 137/MA 113 — BioCalculus Functions (3): The Algebra of Functions

Alberto Corso – (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: We learn how two functions can be combined to form new functions. We then define one-to-one functions, which allows us to introduce the notion of inverse of a one-to-one function. These topics are of importance when we study exponential and logarithmic functions.

Combining Function Composition of Functions

Combining functions

Let f and g be functions with domains A and B. We define new functions f + g, f - g, fg, and f/g as follows:

(f+g)(x) = f(x) + g(x) Domain $A \cap B$

$$(f-g)(x)=f(x)-g(x)$$

Domain $A \cap B$

$$(fg)(x) = f(x)g(x)$$

Domain $A \cap B$

 $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$

Domain $\{x \in A \cap B \mid g(x) \neq 0\}$

Combining Function Composition of Functions

Note

Consider the above definition (f+g)(x) = f(x)+g(x).

The + on the left hand side stands for the operation of addition of functions.

The + on the right hand side, however, stands for addition of the numbers f(x) and g(x).

Similar remarks hold true for the other definitions.

Combining Function Composition of Functions

Example 1:

Let us consider the functions $f(x) = x^2 - 2x$ and g(x) = 3x - 1.

Find f + g, f - g, fg, and f/g and their domains.

Combining Function Composition of Functions

Example 2:

Let us consider the functions $f(x) = \sqrt{9 - x^2}$ and $g(x) = \sqrt{x^2 - 1}$.

Find f + g, f - g, fg, and f/g and their domains.

The graph of the function f + g can be obtained from the graphs of f and g by **graphical addition**.

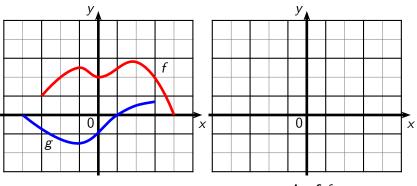
This means that to obtain the value of f + g at any point x we add the corresponding values of f(x) and g(x), that is, the corresponding y-coordinates.

Similar statements can be made for the other operations on functions.

Combining Function Composition of Functions

Example 3:

Use graphical addition to sketch the graph of f + g.



graph of f + g

Combining Function Composition of Functions

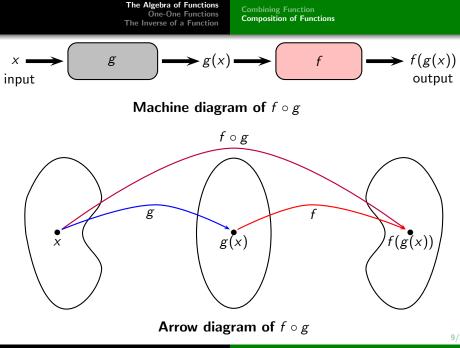
Composition of Functions

Given any two functions f and g, we start with a number x in the domain of g and find its image g(x). If this number g(x) is in the domain of f, we can then calculate the value of f(g(x)).

The result is a new function h(x) = f(g(x)) obtained by substituting g into f. It is called the *composition* (or *composite*) of f and g and is denoted by $f \circ g$ (read: 'f composed with g' or 'f after g')

$$(f \circ g)(x) \stackrel{\mathsf{def}}{=} f(g(x)).$$

WARNING: $f \circ g \neq g \circ f$.



Combining Function Composition of Functions

Example 4:

Use
$$f(x) = 3x - 5$$
 and $g(x) = 2 - x^2$ to evaluate:
 $f(g(0)) = g(f(0)) =$

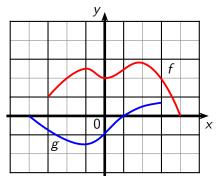
$$f(f(4)) = (g \circ g)(2) =$$

 $(f \circ g)(x) = \qquad \qquad (g \circ f)(x) =$

Combining Function Composition of Functions

Example 5:

Let f and g be the functions considered in Example 3. Use the information provided by the graphs of f and g to find f(g(1)), g(f(0)), f(g(0)), and g(f(4)).



Combining Function Composition of Functions

Example 6:

Let
$$f(x) = \frac{x}{x+1}$$
 and $g(x) = 2x - 1$.

Find the functions $f \circ g$, $g \circ f$, and $f \circ f$ and their domains.

Combining Function Composition of Functions

Example 7:

Express the function
$$F(x) = \frac{x^2}{x^2 + 4}$$
 in the form $F(x) = f(g(x))$.

Combining Function Composition of Functions

Example 8:

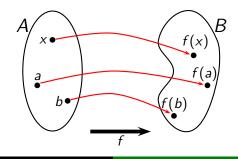
Find functions f and g so that $f \circ g = H$ if $H(x) = \sqrt[3]{2 + \sqrt{x}}$.

Definition Horizontal Line Test

Definition of a One-One Function

A function f with domain A is called a **one-to-one function** if no two elements of A have the same image, that is, $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

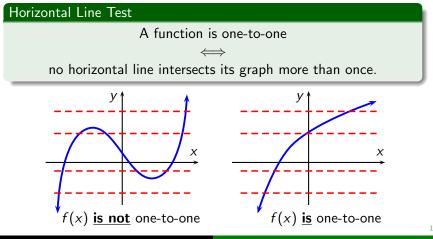
An equivalent way of writing the above condition is: If $f(x_1) = f(x_2)$, then $x_1 = x_2$.



Definition Horizontal Line Test

Horizontal Line Test

For functions that can be graphed in the coordinate plane, there is a useful criterion to determine whether a function is one-to-one or not.



Definition Horizontal Line Test

Example 9:

Show that the function f(x) = 5 - 2x is one-to-one.

Definition Horizontal Line Test

Example 10:

Graph the function $f(x) = (x - 2)^2 - 3$. The function is not one-to-one: Why? Can you restrict its domain so that the resulting function is one-to-one? (There is more than one correct answer.)

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

The Inverse of a Function

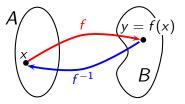
One-to-one functions are precisely those for which one can define a (unique) **inverse function** according to the following definition.

Definition of the Inverse of a Function

Let f be a one-to-one function with domain A and range B. Its **inverse function** f^{-1} has domain B and range A and is defined by

$$f^{-1}(y) = x \quad \Longleftrightarrow \quad f(x) = y,$$

for any $y \in B$.



If f takes x to y, then f^{-1} takes y back to x. I.e., f^{-1} undoes what f does. **NOTE:** f^{-1} does NOT mean $\frac{1}{f}$.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 11:

Suppose f(x) is a one-to-one function. If f(2) = 7, f(3) = -1, f(5) = 18, $f^{-1}(2) = 6$ find: $f^{-1}(7) = f(6) =$

$$f^{-1}(-1) = f(f^{-1}(18)) =$$

If
$$g(x) = 9 - 3x$$
, then $g^{-1}(3) =$

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Properties of Inverse Functions

Let f(x) be a one-to-one function with domain A and range B. The inverse function $f^{-1}(x)$ satisfies the following "cancellation" properties:

$$f^{-1}(f(x)) = x$$
 for every $x \in A$

$$f(f^{-1}(x)) = x$$
 for every $x \in B$

Conversely, any function $f^{-1}(x)$ satisfying the above conditions is the inverse of f(x).

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 12:

Show that the functions $f(x) = x^5$ and $g(x) = x^{1/5}$ are inverses of each other.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 13:

Show that the functions
$$f(x) = \frac{1+3x}{5-2x}$$
 and $g(x) = \frac{5x-1}{2x+3}$ are inverses of each other.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

How to find the Inverse of a One-to-One Function

- 1. Write y = f(x).
- **2.** Solve this equation for x in terms of y (if possible).
- **3.** Interchange x and y. The resulting equation is $y = f^{-1}(x)$.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 14:

Find the inverse of y = 4x - 7.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 15:

Find the inverse of $y = \frac{1}{x+2}$.

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 16:

Find the inverse of
$$y = \frac{2-x}{x+2}$$
.

http://www.ms.uky.edu/~ma137 Lecture #3

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Graph of the Inverse Function

The principle of interchanging x and y to find the inverse function also gives us a method for obtaining the graph of f^{-1} from the graph of f. The graph of f^{-1} is obtained by reflecting the graph of f in the line y = x.

0.

The picture on the right hand side shows the graphs of:

$$f(x) = \sqrt{x+4}$$

and
$$f^{-1}(x) = x^2 - 4, \ x \ge 1$$

Х

Definition Properties of Inverse Functions How to find the Inverse of a One-to-One Function Graph of the Inverse Function

Example 17:

Find the inverse of the function $f(x) = 1 + \sqrt{1 + x}$. Find the domain and range of f and f^{-1} . Graph f and f^{-1} on the same cartesian plane.