
CURVE FITTING – LEAST SQUARES APPROXIMATION

Data analysis and curve fitting: Imagine that we are studying a physical system involving two quantities:
x and y. Also suppose that we expect a linear relationship between these two quantities, that is, we expect
y = ax+b, for some constants a and b. We wish to conduct an experiment to determine the value of the constants
a and b. We collect some data (x1, y1), (x2, y2), . . . , (xn, yn), which we plot in a rectangular coordinate system.
Since we expect a linear relationships, all these points should lie on a single straight line:
The slope of this line will be a, and the intercept is b. In other
words, we should have that the following system of linear equations
has exactly one solution

ax1 + b = y1
ax2 + b = y2

...
axn + b = yn

!


x1 1
x2 1
...

...
xn 1


[
a
b

]
=


y1
y2
...
yn


that is, we should expect the system of linear equations above to
be consistent.

Unfortunately, when we plot our data, we discover that our points
do not lie on a single line. This is only to be expected, since our
measurements are subject to experimental error. On the other
hand, it appears that the points are approximately “collinear.” It
is our aim to find a straight line with equation

y = â x+ b̂

which fits the data “best.” Of course, optimality could be defined
in many different ways.
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Figure 1: Fitting a straight line to data
by the method of least squares

It is customary to proceed as follows. Consider the deviations (differences)

δ1 = (ax1 + b)− y1, δ2 = (ax2 + b)− y2, . . . , δn = (axn + b)− yn.

If all the data points were to be lying on a straight line then there would be a unique choice for a and b such
that all the deviations are zero. In general they aren’t. Which of the deviations are positive, negative or exactly
zero depends on the choice of the parameters a and b. As a condition of optimality we minimize the square

root of the sum of the squares of the deviations (“least squares”), that is, we choose â and b̂ in such a way that√
δ21 + δ22 + . . .+ δ2n is as small as possible.

Remark: This kind of analysis of data is also called regression analysis, since one of the early applications of least
squares was to genetics, to study the well-known phenomenon that children of unusually tall or unusually short
parents tend to be more normal in height than their parents. In more technical language, the children’s height
tends to “regress toward the mean.”

If you have taken a Statistics class in high school, you might have seen the following formulas

a =

n

( n∑
i=1

xiyi

)
−

( n∑
i=1

xi

)( n∑
i=1

yi

)
n

( n∑
i=1

x2i

)
−

( n∑
i=1

xi

)2
b =

1

n

( n∑
i=1

yi − a
n∑

i=1

xi

)
,

which give the optimal solution to our least squares approximation problem. There is no need to memorize these
formulas. The discussion that follows in this set of notes will explain how these formulas are obtained!
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2 CURVE FITTING - LEAST SQUARES APPROXIMATION

Remark/Example: Sppose we are looking for a linear relationship between more than two quantities! For
example, a consulting firm has been hired by a large SEC university to help make admissions decisions. Each
applicant provides the university with three pieces of information: their score on the SAT exam, thire score on the
ACT exam, and their high school GPA (0-4 scale). The university wishes to know what weight to put on each of
these numbers in order to predict student success in college.

The consulting firm begins by collecting data from the previous year’s freshman class. In addition to the admissions
data, the firm collects the student’s current (college) GPA (0-4 scale), say C−GPA. A partial listing of the firm
data might look like

SAT ACT GPA C−GPA
600 30 3.0 3.2
500 28 2.9 3.0
750 35 3.9 3.5
650 30 3.5 3.5
550 25 2.8 3.2
800 35 3.7 3.7
...

...
...

...

.

Ideally, the firm would like to find numbers (weights) x1, x2, x3 such that for all students

(SAT)x1 + (ACT)x2 + (GPA)x3 = (C−GPA).

These numbers would tell the firm (hence, the university) exactly what weight to put on each piece of data.
Statistically, of course, it is highly unlikely that such numbers exist. Still, we would like to have an approximate
“best” solution.

Remark/Example: Instead of a linear relationship among the
two quantities x and y involved in our original physical system,
suppose that we expect a quadratic relationship. That is, we expect

y = ax2 + bx+ c,

for some constants a, b, and c. This means that all our plotted data
points should lie on a single parabola. In other words, the system
of equations below should have exactly one solution

ax21 + bx1 + c = y1
ax22 + bx2 + c = y2

...
ax2n + bxn + c = yn

!


x21 x1 1
x22 x2 1
...

...
...

x2n xn 1


 a

b
c

 =


y1
y2
...
yn


or, in other words, the system of linear equations should be consis-
tent.

Again, this is unlikely since data measurements are subject to ex-
perimental error. As we mentioned, if the exact solution does not

exists, we seek to find the equation of the parabola y = â x2+b̂ x+ĉ
which fits our given data best.
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Figure 2: Fitting a parabola to data
by the method of least squares

General problem: In our all previous examples, our problem reduces to finding a solution to a system of n linear
equations in m variables, with n > m. Using our traditional notations for systems of linear equations, we translate
our problem into matrix notation. Thus, we are seeking to solve

Ax = b,

where A is an n×m given matrix (with n > m), x is a column vector with m variables, and b is a column vector
with n given entries.
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Example 1: Find a solution to  −1 2
2 −3

−1 3

[
x1
x2

]
=

 4
1
2

 .

Solution. The augmented matrix for this system is −1 2 4
2 −3 1

−1 3 2

 .

After applying row operations we obtain  −1 2 4
0 1 9
0 0 −11

 .

This system is inconsistent, so there isn’t a solution. �
“Best” approximate solution to our general problem: Now, instead of looking for a solution to our given
system of linear equations (which, in general, we don’t have!) we could look for an approximate solution. To this

end, we recall that for a given vector v = [v1, v2, . . . , vn]
T its length is defined to be ||v|| =

√
v21 + v22 + . . .+ v2n.

(This is a generalized version of Pythagoras’ Theorem!)

If A is an n × m matrix, x is a column vector with m entries and b is a column vector with n entries, a least
squares solution to the equation Ax = b is a vector x̂ so that the length of the vector Ax̂ − b, that is ||Ax̂ − b||,
is as small as possible. In other words

||Ax̂− b|| ≤ ||Az− b||
for every other vector z.

How do we find this? This is answered in the following Theorem.

Theorem:

The least squares solution x̂ to the system of linear equations Ax = b, where A is an n×m matrix with n > m,
is a/the solution x̂ to the associated system (of m linear equations in m variables)

(ATA)x = ATb,

where AT denotes the transpose matrix of A.

(Note: the matrix ATA in the Theorem is a symmetric, square matrix of size m ×m. If it is invertible, we can
then expect exactly one solution...the least squares solution!)

Example 1 (revisited): Find the least squares solution to the system of linear equations −1 2
2 −3

−1 3

[
x1
x2

]
=

 4
1
2

 .

Solution. We have that ATA =

[
−1 2 −1
2 −3 3

] −1 2
2 −3

−1 3

 =

[
6 −11

−11 22

]
and

ATb =

[
−1 2 −1
2 −3 3

] 4
1
2

 =

[
−4
11

]
. So, using the Theorem, we are looking for solutions to the equation

[
6 −11

−11 22

] [
x1
x2

]
=

[
−4
11

]
.

The augmented matrix

[
6 −11 −4

−11 22 11

]
is equivalent to

[
1 0 3
0 1 2

]
. Hence the least squares solution is x̂1 = 3

and x̂2 = 2. �
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Example 2: Find the least squares solution to the system of linear equations
1 −2

−1 2
0 3
2 5

[
x1
x2

]
=


3
1

−4
2

 .

Solution. We have that ATA =

[
1 −1 0 2
−2 2 3 5

]
1 −2
−1 2
0 3
2 5

 =

[
6 6
6 42

]
and

ATb =

[
1 −1 0 2
−2 2 3 5

]
13
1
−4
2

 =

[
6
−6

]
. So, using the Theorem, we are looking for solutions to the equation

[
6 6
6 42

] [
x1
x2

]
=

[
6

−6

]
.

The augmented matrix

[
6 6 6
6 42 −6

]
is equivalent to

[
1 0 4/3
0 1 −1/3

]
. Hence the least squares solution is

x̂1 = 4/3 and x̂2 = −1/3. �

Example 3: Let us imagine that we are studying a physical system that gets hotter over time. Let us also suppose

that we expect a linear relationship between time and temperature. That is, we expect time and temperature to
be related by a formula of the form

T = at+ b,

where T is temperature (in degrees Celsius), t is time (in seconds), and a and b are unknown physical constants.
We wish to do an experiment to determine the (approximate) values for the constants a and b. We allow our
system to get hot and measure the temperature at various times t. The following table summarizes our findings

t (sec) 0.5 1.1 1.5 2.1 2.3
T (◦C) 32.0 33.0 34.2 35.1 35.7

.

Find the least squares solution to the linear system that arises from this experiment
0.5 a+ b = 32.0
1.1 a+ b = 33.0
1.5 a+ b = 34.2
2.1 a+ b = 35.1
2.3 a+ b = 35.7

!


0.5 1
1.1 1
1.5 1
2.1 1
2.3 1


[
a
b

]
=


32.0
33.0
34.2
35.1
35.7

 .

Solution. We have that ATA =

[
0.5 1.1 1.5 2.1 2.3
1 1 1 1 1

]
0.5 1
1.1 1
1.5 1
2.1 1
2.3 1

 =

[
13.41 7.5

7.5 5

]
and

ATb =

[
0.5 1.1 1.5 2.1 2.3
1 1 1 1 1

]
32.0
33.0
34.2
35.1
35.7

 =

[
259.42
170

]
. So, using the Theorem, we are looking for solutions

to the equation [
13.41 7.5

7.5 5

] [
a
b

]
=

[
259.42
170

]
.
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The augmented matrix

[
13.41 7.5 259.42

7.5 5 170

]
is equivalent to

[
1 0 2.0463
0 1 30.93

]
. Hence, the least squares solution

is â = 2.0463 and b̂ = 30.93. That is, T (t) = 2.0463 t+30.93 is the least squares approximation to our problem. �

Example 4: The table below is the estimated population of the United States (in millions) rounded to three

digits. Suppose there is a linear relationship between time t and population P (t). Use this data to predict the
U.S. population in 2010.

year 1980 1985 1990 1995
population 227 237 249 262

.

Solution. Let t denote “years after 1980” and assume that P (t) = at + b. Hence we are looking for the least

squares solution to the equation


0 1
5 1
10 1
15 1

[
a
b

]
=


227
237
249
262

.

We have that ATA =

[
0 5 10 15
1 1 1 1

]
0 1
5 1
10 1
15 1

 =

[
350 30
30 4

]
and

ATb =

[
0 5 10 15
1 1 1 1

]
227
237
249
262

 =

[
7605
975

]
. So, using the Theorem, we are looking for solutions to the equation

[
350 30
30 4

] [
a
b

]
=

[
7605
975

]
.

The augmented matrix

[
350 30 7605
30 4 975

]
is equivalent to

[
1 0 117/50
0 1 1131/5

]
. So the least squares approximation

is P (t) = 117/50 · t + 1131/5. Thus, the population in 2010 is expected to be P (30) = 296, if we use this least
squares approximation. �

We now revisit the previous problem.

Example 5 (an exponential fit): In population studies, exponential models are much more commonly used

than linear models. This means that we hope to find constants a and b such that the population P (t) is given
approximately by the equation P (t) = a ebt. To convert this into a linear equation, we take the natural logarithm
of both sides, producing

lnP (t) = ln a+ bt.

Use the method of least squares to find values for ln a and b that best fit the data of Example 4.

year 1980 1985 1990 1995
ln(population) 5.425 5.468 5.517 5.568

.

Solution. As before, let t denote “years after 1980” and assume that lnP (t) = ln a + bt. Hence we are looking

for the least squares solution to the equation


1 0
1 5
1 10
1 15

[
ln a
b

]
=


5.425
5.468
5.517
5.568

.

We have that ATA =

[
1 1 1 1
0 5 10 15

]
1 0
1 5
1 10
1 15

 =

[
4 30
30 350

]
and
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ATb =

[
1 1 1 1
0 5 10 15

]
5.425
5.468
5.517
5.568

 =

[
21.978
166.03

]
. So, using the Theorem, we are looking for solutions to the

equation [
4 30
30 350

] [
ln a
b

]
=

[
21.978
166.03

]
.

The augmented matrix

[
4 30 21.978

30 350 166.03

]
is row equivalent to

[
1 0 5.423
0 1 .00956

]
. This means that ln a = 5.423,

so a = 226.558. Hence, the least squares solution is P (t) = 226.558e.00956t, and, thus, P (30) = 301.81. �

Note: The actual U.S. population in 2010 was 309 million people.
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