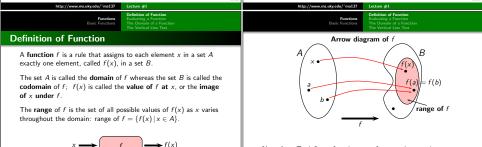
FastTrack — MA 137/MA 113 — BioCalculus Functions (1): Definitions and Basic Functions

Alberto Corso - (alberto.corso@uky.edu)

Department of Mathematics - University of Kentucky

Goal: Perhaps the most useful mathematical idea for modeling the real world is the concept of a function. We explore the idea of a function and then give its mathematical definition.


Functions Around Us/Ways to Represent a Function

In nearly every physical phenomenon we observe that one quantity depends on another. For instance

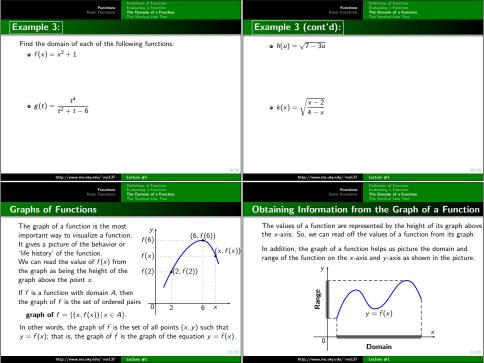
- height is a function of age;
- temperature is a function of date;
- · cost of mailing a package is a function of weight;
- · the area of a circle is a function of its radius;
- . the number of bacteria in a culture is a function of time;
- . the price of a commodity is a function of the demand.

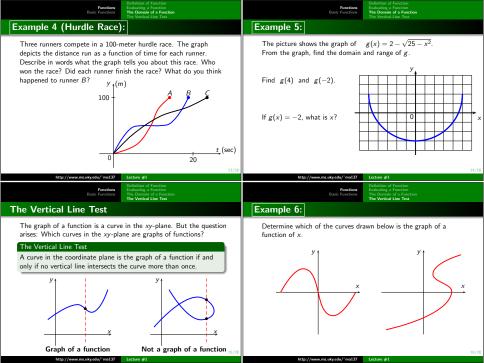
We can describe a specific function in the following four ways:

- verbally (by a description in words);
- algebraically (by an explicit formula);
- visually (by a graph);
- numerically (by a table of values).

Notation: To define a function, we often use the notation

$$f: A \longrightarrow B, \qquad x \mapsto f(x)$$


where A and B are subsets of the set of real numbers \mathbb{R} .


Machine diagram of f

input

output

Functions Basic Functions Basic Functions The Variating a Function The Variating Line Test	Functions Evaluations Function Basic Functions The Domain of a Function The Vertical Line Test
Evaluating a Function:	Example 1:
The symbol that represents an arbitrary number in the domain of a function f is called an independent variable . The symbol that represents a number in the range of f is called a dependent variable .	Evaluate the piecewise function $f(x) = \begin{cases} x^2 + 2x & \text{if } x \leq -1 \\ x & \text{if } x > -1 \end{cases}$ at the indicated values: f(-4) =
In the definition of a function the independent variable plays the role of a "placeholder".	f(-1) =
For example, the function $f(x) = 2x^2 - 3x + 1$ can be thought of as $f(\Box) = 2 \cdot \Box^2 - 3 \cdot \Box + 1.$	f(0) =
To evaluate f at a number (expression), we substitute the number (expression) for the placeholder.	f(1) =
5/28 http://www.ms.uky.edu/~mo137 Lecture #1	6/28 http://www.ms.okycelu/*mail7 Lecture #1
Definition of Function Functions Evaluating a Function Back Functions The Demain of a Function The Vertical Line Test	Function Definition of Function Basic Functions The Domain of a Function The Unit Vertical Line Test
Example 2:	The Domain of a Function
If $f(x) = 3 - 5x + 4x^2$ find:	The domain of a function is the set of all inputs for the function.
f(a) =	The domain may be stated explicitly.
	For example, if we write
f(a+h) =	$f(x) = 1 - x^2 \qquad -2 \le x \le 5$
	then the domain is the set of all real numbers x for which $-2 \le x \le 5$.
$\frac{f(a+h)-f(a)}{h} =$	If the function is given by an algebraic expression and the domain is not stated explicitly, then by convention the domain is the set of <u>all</u> real numbers for which the expression is defined.
	Fact: Two functions f and g are equal if and only if 1. f and g are defined on the same domain, 2. $f(x) = g(x)$ for all x in the domain.
7/28 http://www.ms.uky.edu/*ma137 Lecture #1	8/28 http://www.ms.uky.edu/~ma137 Lecture #1

Function Exhibition of Function Exhibition gale function Basic Functions The Variate Line Text	Functions Variant Functionary Functionary Functions Variants Functions Parallel and Programming Annual Examples Examples
Equations that Define Functions	Basic Functions
Not every equation in two variables (say x and y) defines one of the variables as a function of the other (say y as a function of x). Example 9: Which of the equations that follow define y as a function of x? $x^2 + 2y = 4$ $x = y^2$ $x^2 + y^2 = 9$	We introduce the basic functions that we will consider throughout the remainder of the week/semester. a polynomial functions A polynomial function is a function of the form $f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ where <i>n</i> is a nonnegative integer and a_0, a_1, \ldots, a_n are (real) constants with $a_n \neq 0$. The coefficient a_n is called the leading coefficient, and <i>n</i> is called the degree of the polynomial function. The largest possible domain of <i>f</i> is \mathbb{R} . Examples Suppose <i>a</i> , <i>b</i> , <i>c</i> , and <i>m</i> are constants. • Constant functions: $f(x) = c$ (graph is a horizontal line); • Linear functions: $f(x) = x^2 + bx + c$ (graph is a parabola).
17/28 http://www.ms.uky.edu/*ma137 Lecture #1	18/20 http://www.ms.uky.edu/"ma137 Lecture #1
Functions Hang/Integr Functions Variaus Form of the Equation of a Line Baic Functions Parallel and Perpendicular Lines Examples	Functions Functionary functionary functions Varians From of the Equation of a Line Back Functions Parallel and Perpendicular Lines Examples
• rational functions A rational function is the quotient of two polynomial functions $p(x)$ and $q(x)$: $f(x) = \frac{p(x)}{q(x)}$ for $q(x) \neq 0$. Example The Monod growth function is frequently used to describe the per capita growth rate of organisms when the rate depends on the concentration of some nutrient and becomes saturated for large enough nutrient concentrations.	 power functions A power function is of the form f(x) = x^r where r is a real number. Example Power functions are frequently found in "scaling relations" between biological variables (e.g., organ sizes). Finding such relationships is the objective of allometry. For example, in a study of 45 species of unicellular algae, a relationship between cell volume and cell biomass was sought. It was found [see, Niklas (1994)] that cell biomass ∝ (cell volume)^{0.794}

 $r(N) = a \frac{N}{k+N}$

N

 $r(N) \downarrow$

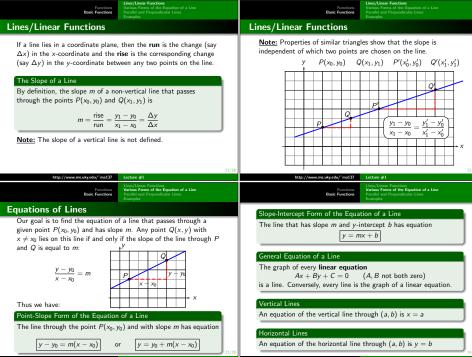
a/2

04

Most scaling relations are to be interpreted in a statistical sense; they are obtained by fitting a curve to data points. The data points are typically scattered about the fitted curve given by the scaling relation.

- exponential and logarithmic functions
- trigonometric functions

 $N \ge 0$


If we denote the concentration of the nutrient

by N, then the per capita growth rate r(N)

 $r(N) = \frac{aN}{k+N}$

where a and k are positive constants.

is given by

http://www.ms.uky.edu/~ma137 Lecture #1

http://www.ms.uky.edu/~ma137 Lecture #1

24/28

Elines/Linear Functions Functions Variations Forms of the Equation of a Line Basic Functions Evalution of Perpendicular Lines Parallel and Perpendicular Lines	Functions Variations Functions Basic Functions Parallel and Perpendicular Lines Parallel and Perpendicular Lines
Parallel and Perpendicular Lines	Example 7:
Parallel Lines Two lines are parallel if and only if they have the same slope.	 Find an equation of the line that has y-intercept 6 and is parallel to the line 2x + 3y + 4 = 0.
Perpendicular Lines Two lines with slopes m_1 and m_2 are perpendicular if and only if $m_1m_2 = -1 \Leftrightarrow m_2 = -\frac{1}{m_1}.$	• Find an equation of the line through $(-1, 2)$ and perpendicular to the line $4x - 8y = 1$.
Note: Also, a horizontal line (slope 0) is perpendicular to a vertical line (no slope). http://www.ms.skysdu/~ms137 Lecture #1	26/28 http://www.mu.ukysdu/?mu137 Lotters #1
Evention: Basic Function: Basic Function: Example Section: Example Section	Evention: Basic Function: Basic Function: Example function: Example function: Example for the function of the
Example 8 (Global Warming):	Example 9 (Problem #52, Section 1.2, p. 16):
	Example 9 (110bleff #52, Section 1.2, p. 10).
 Some scientists believe that the average surface temperature of the world has been rising steadily. Suppose that the average surface temperature is given by T = 0.02t + 8.50, where T is the temperature in °C and t is years since 1900. (a) What do the slope and T-intercept represent? (b) Use the equation to predict the average global surface temperature in 2100. 	 Chample 9 (***********************************