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Section 5.6: Difference Equations: Cobwebbing

We can determine graphically whether a fixed point is stable or unstable.

The fixed points of exponential growth recursive sequence are found graphically where the graphs of Nt+1 = RNt and
Nt+1 = Nt intersect.

We see that the two graphs intersect where Nt = 0 only when R 6= 1.

Figure: Cobwebbing for the exponential model.

We can use the two graphs on the left to follow successive
population sizes. Start at N0 on the horizontal axis. Since
N1 = RN0, we find N1 on the vertical axis, as shown by the solid
vertical and horizontal line segments. Using the line Nt+1 = Nt ,
we can locate N1 on the horizontal axis by the dotted horizontal
and vertical line segments. Using the line Nt+1 = RNt again,
we can find N2 on the vertical axis, as shown in the figure by the
broken horizontal and vertical line segments. Using the line
Nt+1 = Nt once more, we can locate N2 on the horizontal axis
and then repeat the preceding steps to find N3 on the vertical
axis, and so on. This procedure is called cobwebbing.
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Section 5.6: Difference Equations: Cobwebbing

Figure: Cobwebbing for R > 1.

If R > 1, and we see that if N0 > 0, then Nt will not converge
to the fixed point N∗ = 0, but instead will move away from 0
and, in fact, will go to infinity as t tends to∞.

Figure: Cobwebbing for 0 < R < 1.

If 0 < R < 1, we see that if N0 > 0, then Nt will return to the
fixed point N∗ = 0.
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Section 5.6: Cobwebbing: General Case
The general form of a first-order recursion is

xt+1 = f (xt ), t = 0, 1, 2, . . .

We assume that the function f is differentiable in its domain.

To find fixed points algebraically, we solve x = f (x).

To find them graphically, we look for points of intersection of the graphs of xt+1 = f (xt ) and xt+1 = xt .

Figure: Cobwebbing for the exponential model.

The graphs in the picture intersect more than once, which
means that there are multiple equilibria. We can use the
cobwebbing procedure from the previous subsection to
graphically investigate the behavior of the difference equation for
different initial values.

Two cases are shown in the picture, one starting at x0,1 and the
other at x0,2. We see that xt converges to different values,
depending on the initial value.

David Murrugarra (University of Kentucky) MA 137: Lecture 37 Spring 2018 4 / 12

mailto:murrugarra@uky.edu


Section 5.6: Cobwebbing: General Case

Example
(a) Find all the fixed (equilibrium) points for the recursive sequence

xt+1 = x2
t .

(b) What does the Stability Criterion say about the fixed (equilibrium)
points found in part (a)?

(c) Sketch a cobweb graph starting at x0 = 1.1 and x0 = 0.75,
respectively. Use it to determine lim

t−→∞
xt in each case.
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Section 5.6: Restricted Population Growth

In the three examples that follow
The Beverton-Holt Recruitment Model,
The Discrete Logistic Equation,
Ricker Logistic Equation.

we will see that discrete-time population models show very rich and
complex behavior.

Earlier, we discussed the exponential growth model defined by the
recursion

Nt+1 = RNt with N0 = population size at time 0.

When R > 1, the population size will grow indefinitely, if N0 > 0. Such
growth, called density-independent growth, is biologically unrealistic.
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Section 5.6: The Beverton-Holt Recruitment Model

Nt+1 =
RNt

1 + R−1
K Nt

This recursion is known as the Beverton-Holt recruitment curve.

We have two fixed points when R > 1:
the fixed point N̂ = 0, which we call trivial, since it corresponds to
the absence of the population, and
the fixed point N̂ = K , which we call nontrivial, since it
corresponds to a positive population size.

One can show that, when K > 0,R > 1, and N0 > 0, we have that

lim
t→∞

Nt = K
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Section 5.6: The Discrete Logistic Equation

The most popular discrete-time single-species model is the discrete
logistic equation, whose recursion is given by

Nt+1 = Nt

[
1 + R

(
1− Nt

K

)]
where R and K are positive constants. R is called the growth
parameter and K is called the carrying capacity.

This model of population growth exhibits very complicated dynamics,
described in an influential review paper by Robert May (1976). We first
rewrite the model in what is called the canonical form

xt+1 = rxt(1− xt)

where r = 1 + R and

xt =
R

K (1 + R)
Nt
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Section 5.6: The Discrete Logistic Equation

We first compute the fixed points of the discrete logistic equation
written in standard form. We need to solve

x = rx(1− x)

Solving immediately yields the solution x̂ = 0. If x 6= 0, we divide both
sides by x and find that

1 = r(1− x) or x̂ = 1− 1
r

Provided that r > 1, both fixed points are in [0,1).
The fixed point x̂ = 0 corresponds to the fixed point N̂ = 0, which
is why we call x̂ = 0 a trivial equilibrium.
When x̂ = 1− 1/r we obtain that N̂ = K is the other fixed point.
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Section 5.6: Cobwebbing: General Case

Example (HW 21, Problem # 6)
We investigate the canonical discrete-time logistic growth model

xt+1 = rxt(1− xt)

for t = 0,1,2, . . .

Show that for r > 1, there are two fixed points. For which values of r is
the nonzero fixed point locally stable?
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Section 5.6: The Ricker Logistic Equation

An iterated map that has the same (desirable) properties as the logistic
map but does not admit negative population sizes (provided that N0 is
positive) is Ricker’s curve. The recursion, called the Ricker logistic
equation, is given by

Nt+1 = Nte
R
(

1−Nt
K

)
where R and K are positive parameters.

As in the discrete logistic model, R is the growth parameter and K is
the carrying capacity. The fixed points are N̂ = 0 and N̂ = K .

The Ricker logistic equation shows the same complex dynamics as the
discrete logistic map [convergence to the fixed point for small positive
values of R, periodic behavior with the period doubling as R increases,
and chaotic behavior for larger values of R.
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Section 5.6: Cobwebbing: General Case

Example (HW 21, Problem # 8)
We consider density-dependent population growth models of the form

Nt+1 = R(Nt)Nt

The function R(N) = er(1−N/K ) describes the per capita growth.

Find all nontrivial fixed points N̂ (i.e., N̂ > 0) and determine the
stability as a function of the parameter values. We assume that the
function parameters are r > 0 and K > 0.
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