> |
![with(DEtools); -1](images/worksheet_lin_diff_eq_1.gif) |
This system of differential equations (DE1) has two eigenvalues of opposite sign (λ=1 and λ=−2). The point (0,0) is unstable and called a saddle point.
> |
![`assign`(DE1, diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(2, `*`(y(t))))), diff(y(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_2.gif)
![`assign`(DE1, diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(2, `*`(y(t))))), diff(y(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_3.gif) |
![diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(2, `*`(y(t))))), diff(y(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t)))))](images/worksheet_lin_diff_eq_4.gif) |
(1) |
> |
![`assign`(DE2, diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t))))), diff(y(t), t) = `+`(x(t), `-`(`*`(2, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_10.gif)
![`assign`(DE2, diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t))))), diff(y(t), t) = `+`(x(t), `-`(`*`(2, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_11.gif) |
![diff(x(t), t) = `+`(`*`(2, `*`(x(t))), `-`(`*`(3, `*`(y(t))))), diff(y(t), t) = `+`(x(t), `-`(`*`(2, `*`(y(t)))))](images/worksheet_lin_diff_eq_12.gif) |
(2) |
This system of differential equations (DE2) has two eigenvalues of opposite sign (λ=1 and λ=−1). The point (0,0) is unstable and called a saddle point.
> |
![`assign`(DE3, diff(x(t), t) = `+`(`-`(`*`(3, `*`(x(t)))), `*`(sqrt(2), `*`(y(t)))), diff(y(t), t) = `+`(`*`(sqrt(2), `*`(x(t))), `-`(`*`(2, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_18.gif)
![`assign`(DE3, diff(x(t), t) = `+`(`-`(`*`(3, `*`(x(t)))), `*`(sqrt(2), `*`(y(t)))), diff(y(t), t) = `+`(`*`(sqrt(2), `*`(x(t))), `-`(`*`(2, `*`(y(t)))))); 1](images/worksheet_lin_diff_eq_19.gif) |
![diff(x(t), t) = `+`(`-`(`*`(3, `*`(x(t)))), `*`(`^`(2, `/`(1, 2)), `*`(y(t)))), diff(y(t), t) = `+`(`*`(`^`(2, `/`(1, 2)), `*`(x(t))), `-`(`*`(2, `*`(y(t)))))](images/worksheet_lin_diff_eq_20.gif) |
(3) |
This system of differential equations (DE3) has two negative eigenvalues (λ=−1 and λ=−4). The point (0,0) is called a sink or a stable node.
> |
![`assign`(DE4, diff(x(t), t) = `+`(`*`(3, `*`(x(t))), `*`(2, `*`(y(t)))), diff(y(t), t) = `+`(x(t), `*`(2, `*`(y(t))))); 1](images/worksheet_lin_diff_eq_27.gif)
![`assign`(DE4, diff(x(t), t) = `+`(`*`(3, `*`(x(t))), `*`(2, `*`(y(t)))), diff(y(t), t) = `+`(x(t), `*`(2, `*`(y(t))))); 1](images/worksheet_lin_diff_eq_28.gif) |
![diff(x(t), t) = `+`(`*`(3, `*`(x(t))), `*`(2, `*`(y(t)))), diff(y(t), t) = `+`(x(t), `*`(2, `*`(y(t))))](images/worksheet_lin_diff_eq_29.gif) |
(4) |
This system of differential equations (DE4) has two positive eigenvalues (λ=1 and λ=4). The point (0,0) is called a source or an unstable node.
> |
![`assign`(DE5, diff(x(t), t) = `+`(`-`(x(t)), `-`(y(t))), diff(y(t), t) = x(t)); 1](images/worksheet_lin_diff_eq_36.gif) |
![diff(x(t), t) = `+`(`-`(x(t)), `-`(y(t))), diff(y(t), t) = x(t)](images/worksheet_lin_diff_eq_37.gif) |
(5) |
This system of differential equations (DE5) has two complex conjugate eigenvalues (λ=
±![`+`(`*`(`/`(1, 2), `*`(i)))](images/worksheet_lin_diff_eq_39.gif)
) with a negative real part. The point (0,0) is called a stable spiral.
> |
![with(plots); -1](images/worksheet_lin_diff_eq_46.gif) |
> |
![`assign`(fcns, {x(t), y(t)}); 1](images/worksheet_lin_diff_eq_47.gif) |
![{x(t), y(t)}](images/worksheet_lin_diff_eq_48.gif) |
(6) |
> |
![`assign`(sol5, dsolve({DE5, x(0) = -70, y(0) = 70}, fcns, type = numeric, method = classical)); 1](images/worksheet_lin_diff_eq_49.gif)
![`assign`(sol5, dsolve({DE5, x(0) = -70, y(0) = 70}, fcns, type = numeric, method = classical)); 1](images/worksheet_lin_diff_eq_50.gif) |
![proc (x_classical) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error](images/worksheet_lin_diff_eq_51.gif) |
(7) |
> |
![odeplot(sol5, [[t, x(t)], [t, y(t)]], 0 .. 10, color = [](images/worksheet_lin_diff_eq_52.gif)
![odeplot(sol5, [[t, x(t)], [t, y(t)]], 0 .. 10, color = [](images/worksheet_lin_diff_eq_53.gif) |
> |
![`assign`(DE6, diff(x(t), t) = `+`(x(t), `-`(y(t))), diff(y(t), t) = x(t)); 1](images/worksheet_lin_diff_eq_55.gif) |
![diff(x(t), t) = `+`(x(t), `-`(y(t))), diff(y(t), t) = x(t)](images/worksheet_lin_diff_eq_56.gif) |
(8) |
This system of differential equations (DE6) has two complex conjugate eigenvalues (λ=
±![`+`(`*`(`/`(1, 2), `*`(i)))](images/worksheet_lin_diff_eq_58.gif)
) with a positive real part. The point (0,0) is called an unstable spiral.
> |
![with(plots); -1](images/worksheet_lin_diff_eq_65.gif) |
> |
![`assign`(fcns6, {x(t), y(t)}); 1](images/worksheet_lin_diff_eq_66.gif) |
![{x(t), y(t)}](images/worksheet_lin_diff_eq_67.gif) |
(9) |
> |
![`assign`(sol6, dsolve({DE6, x(0) = 1, y(0) = 1}, fcns6, type = numeric, method = classical)); 1](images/worksheet_lin_diff_eq_68.gif)
![`assign`(sol6, dsolve({DE6, x(0) = 1, y(0) = 1}, fcns6, type = numeric, method = classical)); 1](images/worksheet_lin_diff_eq_69.gif) |
![proc (x_classical) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if `<`(1, nargs) then error](images/worksheet_lin_diff_eq_70.gif) |
(10) |
> |
![odeplot(sol6, [[t, x(t)], [t, y(t)]], 0 .. 19, color = [](images/worksheet_lin_diff_eq_71.gif)
![odeplot(sol6, [[t, x(t)], [t, y(t)]], 0 .. 19, color = [](images/worksheet_lin_diff_eq_72.gif) |