MA 138 – Calculus 2 with Life Science Applications The Substitution Rule (Section 7.1)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Lecture 3 1/13

Section 7.1: The Substitution Rule

The substitution rule is the chain rule in integral form.

We therefore begin by recalling the chain rule.

Suppose that we wish to differentiate

$$f(x) = (6x^2 + 3)^3.$$

This is clearly a situation in which we need to use the chain rule.

We set $u = 6x^2 + 3$ so that $f(u) = u^3$.

The chain rule, using Leibniz notation, tells us that

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx} = 3u^2 \cdot (6 \cdot 2x) = 3(6x^2 + 3)^2(12x).$$

http://www.ms.uky.edu/~ma138

Lecture 3 2/13

Reversing these steps and integrating along the way, we get

$$\int 3(6x^2+3)^2(12x)\,dx = \int 3u^2\,du = u^3 + C = (6x^2+3)^3 + C.$$

In the first step, we substituted u for $6x^2 + 3$ and used du = 12x dx.

This substitution simplified the integrand.

At the end, we substitute back $6x^2 + 3$ for u to get the final answer in terms of x.

We summarize this discussion, by stating the following **general principle**:

Substitution Rule for Indefinite Integrals

If
$$u = g(x)$$
, then
$$\int f[g(x)] g'(x) dx = \int f(u) du.$$

http://www.ms.uky.edu/~ma138

Example 1

Evaluate the indefinite integral $\int \cos x \sin x \, dx$

- by using the substitution $u = \cos x$;
- by using the substitution $u = \sin x$;
- by using the trigonometric identity $\sin(2x) = 2\sin x \cos x$.

Compare your answers.

Lecture 3 4 / 13

Example 2

Evaluate the indefinite integral $\int (2x+1)e^{x^2+x} dx$.

http://www.ms.uky.edu/~ma138

Substitution Rule for Definite Integrals

Part II of the FTC says that when we evaluate a definite integral, we must find an antiderivative of the integrand and then evaluate the antiderivative at the limits of integration.

When we use the substitution u = g(x) to find an antiderivative of an integrand, the antiderivative will be given in terms of u at first.

To complete the calculation, we can proceed in either of two ways:

- (1) we can leave the antiderivative in terms of u and change the limits of integration according to u = g(x);
- (2) we can substitute g(x) for u in the antiderivative and then evaluate the antiderivative at the limits of integration in terms of x.

Substitution Rule for Definite Integrals

The first method (1) is the more common one, and we summarize the procedure as follows:

Substitution Rule for Definite Integrals

If
$$u = g(x)$$
, then

If
$$u = g(x)$$
, then
$$\int_a^b f[g(x)] g'(x) dx = \int_{g(a)}^{g(b)} f(u) du.$$

Example 3 (Online Homework # 6)

Evaluate the definite integral $\int_{1}^{e^5} \frac{dx}{x(1 + \ln x)}$.

Lecture 3

Example 4 (Online Homework # 8)

Consider the indefinite integral $\int \frac{3}{3+e^x} dx$.

- The most appropriate substitution to simplify this integral is u = f(x) where f(x) = _____.
 We then have dx = g(u)du where g(u) = _____.
 (Hint: you need to back substitute for x in terms of u for this part.)
- After substituting into the original integral we obtain $\int h(u) du$ where h(u) = ______.
- To evaluate this integral rewrite the numerator as 3 = u (u 3). Simplify, then integrate, thus obtaining $\int h(u) du = H(u)$ where $H(u) = \underline{\hspace{1cm}} + C$.

http://www.ms.uky.edu/~ma138

Example 4, cont.ed (Online Homework #8)

After substituting back for u we obtain our final answer

$$\int \frac{3}{3+e^x} dx = \underline{\qquad} + C.$$

http://www.ms.uky.edu/~ma138

Lecture 3 10/13

Example 5 (Online Homework # 9)

Consider the definite integral $\int_0^1 x^2 \sqrt{5x+6} \, dx$.

- Then the most appropriate substitution to simplify this integral is $u = \int_{-\infty}^{\infty} T \ln dx = f(x) du$ where $f(x) = \int_{-\infty}^{\infty} T \ln dx$
- After making the substitution and simplifying we obtain the integral

$$\int_a^b g(u)\,du$$
 where $g(u)=$ _____, $a=$ ____ and $b=$ ____.

■ This definite integral has value = _____.

Example 6 (similar to Example 5)

Consider the definite integral $\int_{1}^{2} x^{5} \sqrt{x^{3} + 2} dx$.

- Then the most appropriate substitution to simplify this integral is $u = \int_{-\infty}^{\infty} T \ln dx = f(x) du$ where $f(x) = \int_{-\infty}^{\infty} T \ln dx$
- After making the substitution and simplifying we obtain the integral

$$\int_a^b g(u) \, du$$
 where $g(u) =$ _____, $a =$ ____ and $b =$ ____.

This definite integral has value = _____.

Example 7 (Online Homework # 10)

Consider the indefinite integral $\int \frac{1}{3x + 7\sqrt{x}} dx$.

- Then the most appropriate substitution to simplify this integral is u =____. Then dx = f(x)du where f(x) =____.
- After making the substitution and simplifying we obtain the integral

$$\int g(u)\,du$$

where $g(u) = \underline{\hspace{1cm}}$.

This last integral is: = _____ + C.
 (Leave out constant of integration from your answer.

+ C

After substituting back for u we obtain the following final form of the