MA 138 – Calculus 2 with Life Science Applications Integration by Parts (Section 7.2)

Alberto Corso

 $\langle alberto.corso@uky.edu \rangle$

Department of Mathematics University of Kentucky

http://www.ms.uky.edu/~ma138

About Example 4 from the previous lecture

Last time we integrated $\int \frac{3}{3 + e^x} dx$ by using the substitution $u = 3 + e^x$. This lead to $du = e^x dx = (u - 3) dx$. Thus

$$\int \frac{3}{3+e^{x}} dx \quad \iff \quad \int \frac{3}{u} \cdot \frac{du}{u-3} = \int \frac{3}{u(u-3)} du.$$

A natural question to ask is:

"Why should I care about integrals of this form?"

Next, I will give you a good reason.

We will study more systematically integrals of this form in Section 7.3.

Examples

The Logistic Growth Model

In Sections 3.3 and 4.9 we have introduced the logistic growth model. In this growth model it is assumed that the population size N(t) at time t satisfies the initial value problem

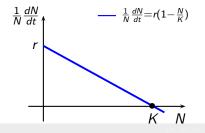
$$\frac{dN}{dt} = r N \left(1 - \frac{N}{K} \right) \qquad \qquad N(0) = N_0$$

where r (=growth rate) and K (=carrying capacity) are positive constants.

Rewriting this differential equation as

$$\frac{1}{N}\frac{dN}{dt} = r\left(1 - \frac{N}{K}\right)$$

says that the per capita growth rate in the logistic equation is a linearly decreasing function of population size http://www.ms.uky.edu/~ma138



Lecture 4

Examples

In Chapter 8 we will see that in order to solve the logistic differential equation we first separate the variables to obtain

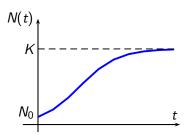
$$\frac{1}{N(1-N/K)}\,dN=r\,dt.$$

Then we integrate both sides with respect to N and t

$$\int \frac{K}{N(N-K)} \, dN = \int -r \, dt.$$

After several calculations we obtain that the solution of the IVP is

$$N(t) = rac{K}{1 + (K/N_0 - 1)e^{-rt}}.$$



http://www.ms.uky.edu/~ma138

Section 7.2: Integration by Parts

Integration by parts is the product rule in integral form.

Let f = f(x) and g = g(x) be differentiable functions. Then, differentiating the product fg with respect to x yields

$$(fg)' = f'g + fg'$$

or, after rearranging,

$$fg' = (fg)' - f'g.$$

Integrating both sides with respect to x, we find that

$$\int fg' \, dx = \int (fg)' \, dx - \int f'g \, dx.$$

Since fg is an antiderivative of (fg)', it follows that

$$\int (fg)' dx = fg + C.$$

http://www.ms.uky.edu/~ma138

Lecture 4

Therefore

Theory

0000

$$\int fg'\,dx=fg-\int f'g\,dx.$$

(Note that the constant C can be absorbed into the indefinite integral on the right-hand side.) Because f' = df/dx and g' = dg/dx, we can also write the preceding equation in the short form

$$\int f dg = fg - \int g df.$$

We summarize this discussion, by stating the following general rule:

Rule for Integration by Parts

If f(x) and g(x) are differentiable functions, then

$$\int f(x)g'(x) \, dx = f(x)g(x) - \int f'(x)g(x) \, dx;$$
$$\int_{a}^{b} f(x)g'(x) \, dx = f(x)g(x) \Big]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

http://www.ms.uky.edu/~ma138

Lecture 4

Example 1 (Problem #61, Section 7.2, page 373)

Evaluate the indefinite integral: $\int \ln x \, dx$.

Theory 00000

Example 2 (Online Homework # 8)

If
$$g(1) = -5$$
, $g(5) = 2$ and $\int_{1}^{5} g(x) dx = -10$, evaluate
 $\int_{1}^{5} x g'(x) dx$.

Examples

Example 3 (Online Homework # 2)

Evaluate the indefinite integral:

 $e^{4x}\sin(6x) dx$.

http://www.ms.uky.edu/~ma138

Example 4 (Online Homework # 3)

Evaluate the indefinite integral: $\int x^9 \cos(x^5) dx$.

(**Hint:** First make a substitution and then use integration by parts to evaluate the integral.)

Example 5 (Problem #31, Section 7.2, page 372)

Evaluate the indefinite integrals:

 $\int \cos^2 x \, dx$ $\int \cos^3 x \, dx.$