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About Example 4 from the previous lecture

Last time we integrated
∫ 3

3 + ex dx by using the substitution u = 3 + ex.

This lead to du = ex dx = (u − 3) dx. Thus∫ 3
3 + ex dx ↭

∫ 3
u · du

u − 3 =

∫ 3
u(u − 3) du.

A natural question to ask is:

“Why should I care about integrals of this form?”

Next, I will give you a good reason.

We will study more systematically integrals of this form in Section 7.3.
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The Logistic Growth Model
In Sections 3.3 and 4.9 we have introduced the logistic growth model. In
this growth model it is assumed that the population size N(t) at time t
satisfies the initial value problem

dN
dt = r N

(
1 − N

K

)
N(0) = N0,

where r (=growth rate) and K (=carrying capacity) are positive constants.
Rewriting this differential equation as

1
N

dN
dt = r

(
1 − N

K

)
says that the per capita growth rate in the
logistic equation is a linearly decreasing
function of population size.

1
N

dN
dt =r(1−N

K )

•
N

1
N

dN
dt

K

r

http://www.ms.uky.edu/~ma138 UK Math
Lecture 4 3 / 11



Theory Examples

In Chapter 8 we will see that in order to solve the logistic differential
equation we first separate the variables to obtain

1
N(1 − N/K) dN = r dt.

Then we integrate both sides with respect to N and t∫ K
N(N − K) dN =

∫
−r dt.

After several calculations we obtain that
the solution of the IVP is

N(t) = K
1 + (K/N0 − 1)e−rt .

t

N(t)

K

N0
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Section 7.2: Integration by Parts

Integration by parts is the product rule in integral form.
Let f = f(x) and g = g(x) be differentiable functions. Then, differentiating
the product fg with respect to x yields

(fg)′ = f ′g + fg ′

or, after rearranging,
fg ′ = (fg)′ − f ′g.

Integrating both sides with respect to x, we find that∫
fg ′ dx =

∫
(fg)′ dx −

∫
f ′g dx.

Since fg is an antiderivative of (fg)′, it follows that∫
(fg)′ dx = fg + C.
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Therefore ∫
fg ′ dx = fg −

∫
f ′g dx.

(Note that the constant C can be absorbed into the indefinite integral on
the right-hand side.) Because f ′ = df/dx and g ′ = dg/dx, we can also
write the preceding equation in the short form∫

f dg = fg −
∫

g df.

We summarize this discussion, by stating the following general rule:
Rule for Integration by Parts
If f(x) and g(x) are differentiable functions, then∫

f (x)g ′(x) dx = f (x)g(x)−
∫

f ′(x)g(x) dx;∫ b

a
f (x)g ′(x) dx = f (x)g(x)

]b

a
−
∫ b

a
f ′(x)g(x) dx.
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Example 1 (Problem #61, Section 7.2, page 373)
Evaluate the indefinite integral:

∫
ln x dx.
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Example 2 (Online Homework # 8)

If g(1) = −5, g(5) = 2 and
∫ 5

1
g(x) dx = −10, evaluate∫ 5

1
x g′(x) dx.
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Example 3 (Online Homework # 2)
Evaluate the indefinite integral:

∫
e4x sin(6x) dx.
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Example 4 (Online Homework # 3)
Evaluate the indefinite integral:

∫
x9 cos(x5) dx.

(Hint: First make a substitution and then use integration by parts to
evaluate the integral.)
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Example 5 (Problem #31, Section 7.2, page 372)
Evaluate the indefinite integrals:∫

cos2 x dx
∫

cos3 x dx.
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