MA 138 – Calculus 2 with Life Science Applications Matrices (Section 9.2)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Lecture 22 1/16

Identity Matrix and Inverse of a Matrix

For any $n \ge 1$, the identity matrix is an $n \times n$ matrix, denoted by I_n , with 1's on its diagonal line and 0's elsewhere; that is,

$$I_n = \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right]$$

Property of the Identity Matrix

Suppose that A is an $m \times n$ matrix. Then $I_m A = A = AI_n$.

Inverse of a Matrix

Suppose that A is an $n \times n$ square matrix. If there exists an $n \times n$ square matrix B such that $AB = I_n = BA$ then B is called the inverse matrix of A and is denoted by A^{-1} .

http://www.ms.uky.edu/~ma138

Lecture 22 2 / 16

Example 1 (Part I)...Checking

Verify that:

■
$$A_1 = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$$
 and $B_1 = \frac{1}{2} \begin{bmatrix} 4 & -5 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & -5/2 \\ -1 & 3/2 \end{bmatrix}$

are inverses of each other. That is $A_1B_1 = I_2 = B_1A_1$.

are inverses of each other. That is $A_2B_2 = I_3 = B_2A_2$.

http://www.ms.uky.edu/~ma138

Matrix Representation of Linear Systems

We observe that the system of linear equations

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m \end{cases}$$

can be written in matrix form as AX = B, where

$$\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix} \cdot \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} = \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}$$

http://www.ms.uky.edu/~ma138

Lecture 22 4/16

The ... Guiding Light

- A simple key observation: To solve 5x = 10 for x, we just divide both sides by $5 (\equiv \text{multiply both sides by } 1/5 = 5^{-1})$. That is, $5x = 10 \iff 5^{-1} \cdot 5x = 5^{-1} \cdot 10 \iff x = 2$ as $5^{-1} \cdot 5 = 1$ and $5^{-1} \cdot 10 = 2$.
- We have learnt how to write a system of n linear equations in n variables in the matrix form AX = B.
- To solve AX = B, we therefore need an operation that is *analogous* to multiplication by the 'reciprocal' of A. We have defined, whenever possible, a matrix A^{-1} that serves this function (i.e., $A^{-1} \cdot A = \text{Identity Matrix}$).
- Then, whenever possible, we can write the solution of AX = B as $AX = B \iff A^{-1} \cdot AX = A^{-1} \cdot B \iff X = A^{-1} \cdot B$.

 $http://www.ms.uky.edu/{\sim}ma138$

Example 1 (Part II)

Using the results verified in Example 1 (Part I) and our *Guiding Light* (\equiv Principle), solve the following systems of linear equations by transforming them into matrix form

http://www.ms.uky.edu/~ma138

Lecture 22 6/16

Properties of Matrix Inverses

The following properties of matrix inverses are often useful.

Properties of Matrix Inverses

Suppose A and B are both invertible $n \times n$ matrices then

- \blacksquare A^{-1} is unique;
- $(A^{-1})^{-1} = A;$
- $(AB)^{-1} = B^{-1}A^{-1};$
- $(A^T)^{-1} = (A^{-1})^T$.

Lecture 22 7 / 16

How do we find the inverse (if possible) of a matrix?

- First of all the matrix has to be a square matrix!
- Suppose n = 2. For example, $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.
- We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$.

$$AB = I_2 \quad \iff \quad \begin{bmatrix} 3x + 5z & 3y + 5w \\ 2x + 4z & 2y + 4w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

http://www.ms.uky.edu/~ma138

Warning (using the other condition)

- Consider again the matrix $A = \begin{bmatrix} 3 & 5 \\ 2 & 4 \end{bmatrix}$.
- We need to find a matrix $B = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ such that $AB = I_2 = BA$.
- Suppose we impose instead the condition $BA = I_2$.

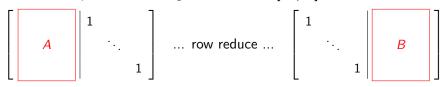
■
$$BA = I_2$$
 \longleftrightarrow
$$\begin{bmatrix} 3x + 2y & 5x + 4y \\ 3z + 2w & 5z + 4w \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Morale: We work with the transpose of A and of A^{-1} .

 $http://www.ms.uky.edu/{\sim}ma138$

General Method for finding (if possible) the inverse

- Let A be an $n \times n$ matrix. Finding a matrix B with $AB = I_n$ results in n linear systems, each consisting of n equations in n unknowns.
- The corresponding augmented matrices have the same matrix A on their left side and a column of 0's and a single 1 on their right side.
- By solving these *n* systems simultaneously, we can speed up the process of finding the inverse matrix.
- To do so, we construct the augmented matrix $[A | I_n]$. We row reduce to obtain, if possible, the augmented matrix $[I_n | B]$.



■ The matrix B, if it exists, is the inverse A^{-1} of A.

 $http://www.ms.uky.edu/{\sim}ma138$

Example 2

Find the inverse of the 3
$$\times$$
 3 matrix $A = \begin{bmatrix} -1 & 3 & -1 \\ 2 & -2 & 3 \\ -1 & 1 & 2 \end{bmatrix}$

Lecture 22 11/16

General Formula for a 2x2 Matrix

- For simplicity we write $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ instead of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$.
- Construct the augmented matrix $\begin{bmatrix} a & b & 1 & 0 \\ c & d & 0 & 1 \end{bmatrix}$.
- Perform the Gaussian Elimination Algorithm. Set $\Delta = ad bc$.
- $\begin{array}{c|c} \bullet & \stackrel{\frac{1}{a}R_1}{\bullet} & \left[\begin{array}{cc|c} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ c & d & 0 & 1 \end{array} \right] \rightsquigarrow \\ \begin{array}{c|c} R_2 cR_1 & \left[\begin{array}{cc|c} 1 & \frac{b}{a} & \frac{1}{a} & 0 \\ 0 & d \frac{bc}{a} & -\frac{c}{a} & 1 \end{array} \right] \end{array}$

http://www.ms.uky.edu/~ma138

Lecture 22 12 / 16

The Inverse of a 2×2 Matrix

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 be a 2 × 2 matrix.

- We define det(A) = ad bc.
- A is invertible (\equiv nonsingular) if and only if $det(A) \neq 0$.

In particular,
$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Looking back at the formula for A^{-1} , where A is a 2×2 matrix whose determinant is nonzero, we see that, to find the inverse of A

- we divide by the determinant of A,
- switch the diagonal elements of A,
- change the sign of the off-diagonal elements.

If the determinant is equal to 0, then the inverse of A does not exist.

 $http://www.ms.uky.edu/{\sim}ma138$

Lecture 22 13 / 16

Example 3

Find the inverse of the matrix

$$B = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

Lecture 22

The determinant can be defined for any $n \times n$ matrix. The general formula is computationally complicated for $n \ge 3$.

We mention the following important result. Part (2) below will be of particular interest to us in the near future.

Theorem

Suppose that A is an $n \times n$ matrix, and X and $\mathbf{0}$ are $n \times 1$ matrices. Then

- A is **invertible** (\equiv **nonsingular**) if and only if det(A) \neq 0.
- The matrix equation (\equiv system of linear equations) $AX = \mathbf{0}$ has a **nontrivial solution** \iff A is **singular** \iff $\det(A) = 0$.

 $http://www.ms.uky.edu/{\sim}ma138$

Lecture 22 15 / 16

Example 4

Find the solution of the following matrix equations (\equiv systems of linear equations)

http://www.ms.uky.edu/~ma138

Lecture 22 16 / 16