MA 138 – Calculus 2 with Life Science Applications Linear Maps (Section 9.3)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Lecture 23 1/17

Outline

- We mostly focus on 2×2 matrices, but point out that we can generalize our discussion to arbitrary $n \times n$ matrices.
- Consider a map of the form

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \quad \text{or, in short,} \quad \mathbf{v} \mapsto A\mathbf{v}$$

where A is a 2×2 matrix and \mathbf{v} is a 2×1 (column) vector.

- Since $A\mathbf{v}$ is a 2×1 vector, this map takes a 2×1 vector and maps it into a 2×1 vector. This enables us to apply A repeatedly: We can compute $A(A\mathbf{v}) = A^2\mathbf{v}$, which is again a 2×1 vector, and so on.
- We will **first** look at vectors \mathbf{v} , **then** at maps $\mathbf{v} \mapsto A\mathbf{v}$, and **finally** at iterates of the map A (i.e., $A^2\mathbf{v}$, $A^3\mathbf{v}$, and so on).

http://www.ms.uky.edu/~ma138

Lecture 23 2 / 17

Graphical Representation of (Column) Vectors

We assume that $\mathbf{v} = \begin{bmatrix} x_{\mathbf{v}} \\ y_{\mathbf{v}} \end{bmatrix}$ is a 2×1 matrix.

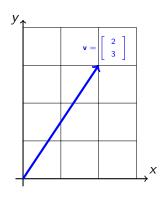
We call \mathbf{v} a column vector or simply a **vector**.

Since a 2×1 matrix has just two components, we can represent a vector in the plane.

For instance, to represent the vector

$$\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

in the x-y plane, we draw an arrow from the origin (0,0) to the point (2,3).



Lecture 23 3 / 17

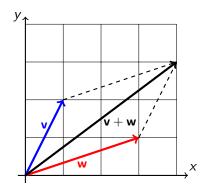
Addition of Vectors

Because vectors are matrices, we can add vectors using matrix addition. For instance.

$$\left[\begin{array}{c}1\\2\end{array}\right]+\left[\begin{array}{c}3\\1\end{array}\right]=\left[\begin{array}{c}4\\3\end{array}\right]$$

This vector sum has a simple geometric representation. The sum $\mathbf{v} + \mathbf{w}$ is the diagonal in the parallelogram that is formed by the two vectors \mathbf{v} and \mathbf{w} .

The rule for vector addition is therefore referred to as the **parallelogram law**.



http://www.ms.uky.edu/~ma138

Lecture 23 4 / 17

Length of Vectors

The length of the vector $\mathbf{v} = \begin{bmatrix} x_{\mathbf{v}} \\ y_{\mathbf{v}} \end{bmatrix}$, denoted by $|\mathbf{v}|$, is the distance from

the origin (0,0) to the point $(x_{\mathbf{v}},y_{\mathbf{v}})$.

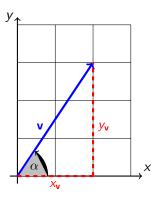
By Pythagoras Theorem we have

length of
$$\mathbf{v} = \|\mathbf{v}\| = \sqrt{x_{\mathbf{v}}^2 + y_{\mathbf{v}}^2}$$

We define the direction of \mathbf{v} as the angle α between the positive x-axis and the vector \mathbf{v} . The angle α is in the interval $[0, 2\pi)$ and satisfies $\tan \alpha = y_{\mathbf{v}}/x_{\mathbf{v}}$.

We thus have two distinct ways of representing vectors in the plane: We can use

• or the length and direction $(\|\mathbf{v}\|, \alpha)$.



http://www.ms.uky.edu/~ma138

Lecture 23 5 / 17

Scalar Multiplication of Vectors

Multiplication of a vector by a scalar is carried out componentwise.

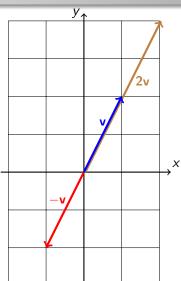
If we multiply
$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 by 2, we get $2\mathbf{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. This operation corresponds to

$$2\mathbf{v} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$
. This operation corresponds to

changing the length of the vector by the factor 2.

If we multiply
$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 by -1 , then the resulting vector is $-\mathbf{v} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$, which

has the same length as the original vector, but points in the opposite direction.



http://www.ms.uky.edu/~ma138

Lecture 23

Linear Maps (also called Linear Transformations)

We start with a graphical approach to study maps of the form

$$\mathbf{v}\mapsto A\mathbf{v}$$

where A is a 2×2 matrix and \mathbf{v} is a 2×1 vector.

Since $A\mathbf{v}$ is a 2×1 vector as well, the map A takes the 2×1 vector \mathbf{v} and maps it to the 2×1 vector $A\mathbf{v}$ can be thought of as a map from the plane \mathbb{R}^2 to the plane \mathbb{R}^2 .

We will discuss simple examples of maps from \mathbb{R}^2 into \mathbb{R}^2 defined by $\mathbf{v}\mapsto A\mathbf{v}$, that take the vector \mathbf{v} and rotate, stretch, or contract it.

For an arbitrary matrix A, vectors may be moved in a way that has no simple geometric interpretation.

Lecture 23 7 / 17

Example 1 (Reflections)

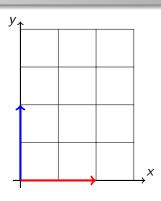
Describe how multiplication by the matrices below changes the vectors in the picture:

$$A_1 = \left[egin{array}{cc} 1 & 0 \ 0 & -1 \end{array}
ight]$$

$$A_3 = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right]$$

$$A_2 = \left[egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight]$$

$$A_4 = \left[egin{array}{cc} 0 & -1 \ -1 & 0 \end{array}
ight]$$



Lecture 23 8 / 17

Example 2 (Contractions or Expansions)

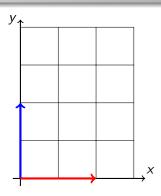
Describe how multiplication by the matrices below changes the vectors in the picture:

$$A_1 = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right]$$

$$A_2 = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1/2 \end{array} \right]$$

$$A_3 = \left[\begin{array}{cc} a & 0 \\ 0 & 1 \end{array} \right]$$

$$A_4 = \left| \begin{array}{cc} a & 0 \\ 0 & b \end{array} \right|$$



Lecture 23 9 / 17

Example 3 (Shears)

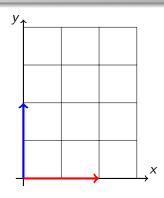
Describe how multiplication by the matrices below changes the vectors in the picture:

$$A_1 = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

$$A_2 = \left[\begin{array}{cc} 1 & a \\ 0 & 1 \end{array} \right]$$

$$A_3 = \left| \begin{array}{cc} 1 & -a \\ 0 & 1 \end{array} \right|$$

$$A_4 = \left| \begin{array}{cc} 1 & 0 \\ b & 1 \end{array} \right|$$

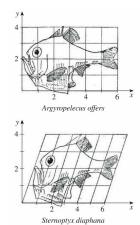


Lecture 23 10 / 17

Example 4

Sir D'Arcy Wentworth Thompson (May 2, 1860 - June 21, 1948) was a Scottish biologist, mathematician, and classics scholar. He was a pioneer of mathematical biology. Thompson is remembered as the author of the distinctive 1917 book *On Growth and Form*. The book led the way for the scientific explanation of morphogenesis, the process by which patterns are formed in plants and animals.

For example, Thompson illustrated the transformation of *Argyropelecus offers* into *Sternoptyx diaphana* by applying a 20° shear mapping (\equiv transvection). What is the form of the matrix that describes this change?



(source: Wikipedia)

http://www.ms.uky.edu/~ma138

Lecture 23

Rotations

The following matrix rotates a vector in the x-y plane by an angle α :

$$R_{\alpha} = \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right].$$

If $\alpha > 0$ the rotation is counterclockwise; if $\alpha < 0$ it is clockwise.

Properties of Rotations:

- $\det(R_{\alpha}) = \cos^2 \alpha + \sin^2 \alpha = 1.$
- A rotation by an angle α followed by a rotation by an angle β should be equivalent to a single rotation by a total angle $\alpha + \beta$. In fact, using the usual trigonometric identities, we have

$$R_{\alpha}R_{\beta} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \alpha \cos \beta - \sin \alpha \sin \beta & -\cos \alpha \sin \beta - \sin \alpha \cos \beta \\ \sin \alpha \cos \beta + \cos \alpha \sin \beta & -\sin \alpha \sin \beta + \cos \alpha \cos \beta \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{bmatrix} = R_{\alpha + \beta}$$

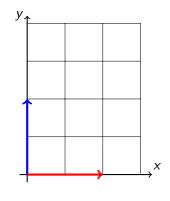
■ The previous identity shows that the product of rotations is commutative: $R_{\alpha}R_{\beta} = R_{\beta}R_{\alpha}$.

Example 5 (Rotations)

Describe how multiplication by the matrices below changes the vectors in the picture:

$$A = \begin{bmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{bmatrix}$$

$$B = \begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$$



Lecture 23 13 / 17

Properties of Linear Maps

According to the properties of matrix multiplication, the map $\mathbf{v} \mapsto A\mathbf{v}$ satisfies the following conditions:

- $\mathbf{A}(\mathbf{v}+\mathbf{w})=A\mathbf{v}+A\mathbf{w}$, and
- $A(\lambda \mathbf{v}) = \lambda (A \mathbf{v})$, where λ is a scalar.

Because of these two properties, we say that the map $\mathbf{v} \mapsto A\mathbf{v}$ is linear.

http://www.ms.uky.edu/~ma138

Lecture 23 14 / 17

Example 6 (Problem # 2, Section 9.3, p 533)

Show by direct calculation that $A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$ and $A(\lambda \mathbf{v}) = \lambda (A\mathbf{v})$.

$$A(\mathbf{v} + \mathbf{w}) = A\mathbf{v} + A\mathbf{w}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} x' \\ y' \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x+x' \\ y+y' \end{bmatrix}$$

$$= \begin{bmatrix} a(x+x') + b(y+y') \\ c(x+x') + d(y+y') \end{bmatrix}$$

$$= \begin{bmatrix} (ax + by) + (ax' + by') \\ (cx + dy) + (cx' + dy') \end{bmatrix}$$

$$= \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix} + \begin{bmatrix} ax' + by' \\ cx' + dy' \end{bmatrix}$$

$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$A(\lambda \mathbf{v}) = \lambda (A\mathbf{v})$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \left(\lambda \begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \lambda x \\ \lambda y \end{bmatrix} = \begin{bmatrix} a(\lambda x) + b(\lambda y) \\ c(\lambda x) + d(\lambda y) \end{bmatrix}$$
$$= \begin{bmatrix} \lambda(ax + by) \\ \lambda(cx + dy) \end{bmatrix} = \lambda \begin{bmatrix} ax + by \\ cx + dy \end{bmatrix}$$
$$= \lambda \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \right)$$

http://www.ms.uky.edu/~ma138

Example 7

Consider
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. Find $A\mathbf{u}$ and $A\mathbf{v}$.

http://www.ms.uky.edu/~ma138

Lecture 23 16 / 17

Composition of Linear Maps \equiv Product of Matrices

Consider two linear maps $\mathbb{R}^2 \stackrel{f}{\longrightarrow} \mathbb{R}^2 \stackrel{g}{\longrightarrow} \mathbb{R}^2$ given by the matrices A_f and A_g

$$\left[\begin{array}{c} x\\y\end{array}\right]\mapsto \left[\begin{array}{c} x'\\y'\end{array}\right]=\underbrace{\left[\begin{array}{cc} a&b\\c&d\end{array}\right]}_{A_f}\left[\begin{array}{c} x\\y\end{array}\right]\qquad \left[\begin{array}{c} x'\\y'\end{array}\right]\mapsto \left[\begin{array}{c} x''\\y''\end{array}\right]=\underbrace{\left[\begin{array}{cc} \alpha&\beta\\\gamma&\delta\end{array}\right]}_{A_g}\left[\begin{array}{c} x'\\y'\end{array}\right]$$

That is the coordinates are transformed according to the rules

$$\left\{ \begin{array}{l} x' = \mathsf{a}\mathsf{x} + \mathsf{b}\mathsf{y} \\ \mathsf{y}' = \mathsf{c}\mathsf{x} + \mathsf{d}\mathsf{y} \end{array} \right. \left. \left\{ \begin{array}{l} x'' = \alpha \mathsf{x}' + \beta \mathsf{y}' \\ \mathsf{y}'' = \gamma \mathsf{x}' + \delta \mathsf{y}' \end{array} \right. \right.$$

If we compose the two maps we obtain the transformation

$$\begin{cases} x'' = \alpha(ax + by) + \beta(cx + dy) = (\alpha a + \beta c)x + (\alpha b + \beta d)y \\ y'' = \gamma(ax + by) + \delta(cx + dy) = (\gamma a + \delta c)x + (\gamma b + \delta d)y \end{cases}$$

whose matrix representation corresponds to the product A_gA_f of the two matrices

$$\begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} x'' \\ y'' \end{bmatrix} = \underbrace{\begin{bmatrix} \alpha s + \beta c & \alpha b + \beta d \\ \gamma s + \delta c & \gamma b + \delta d \end{bmatrix}}_{A_{\sigma f}} \begin{bmatrix} x \\ y \end{bmatrix} = \underbrace{\begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}}_{A_{\sigma}} \underbrace{\begin{bmatrix} s & b \\ c & d \end{bmatrix}}_{A_{\sigma}} \begin{bmatrix} x \\ y \end{bmatrix}$$

http://www.ms.uky.edu/~ma138