MA 138 – Calculus 2 with Life Science Applications Eigenvectors and Eigenvalues (Section 9.3)

Alberto Corso

(alberto.corso@uky.edu)

Department of Mathematics University of Kentucky

Lecture 25 1/13

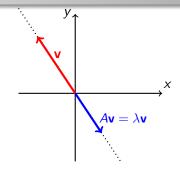
Eigenvalues and Eigenvectors

Definition

Assume that A is a square matrix. A nonzero vector \mathbf{v} that satisfies the equation

$$A\mathbf{v} = \lambda \mathbf{v} \qquad (\mathbf{v} \neq \mathbf{0})$$

is an **eigenvector** of the matrix A, and the number λ is an **eigenvalue** of the matrix A.



- The zero vector $\mathbf{0}$ always satisfies the equation $A\mathbf{0} = \lambda \mathbf{0}$ for any choice of λ . Thus $\mathbf{0}$ is not special. That's why we assume $\mathbf{v} \neq \mathbf{0}$.
- The eigenvalue λ can be 0, though.
- **Geometric interpretation**, when the eigenvalue $\lambda \in \mathbb{R}$: If we draw a straight line through the origin in the direction of an eigenvector, then any vector on this straight line will remain on the line after the map A is applied.

http://www.ms.uky.edu/~ma138

Example 1 (Online Homework # 5)

Determine if v is an eigenvector of the matrix A:

(a)
$$A = \begin{bmatrix} -35 & -14 \\ 84 & 35 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$;

(b)
$$A = \begin{bmatrix} 19 & 24 \\ -12 & -17 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$;

(c)
$$A = \begin{bmatrix} -3 & -10 \\ 5 & 12 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 7 \\ -2 \end{bmatrix}$.

http://www.ms.uky.edu/~ma138

Lecture 25 3 / 13

Example 2 (Online Homework # 6)

Given that
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ are eigenvectors of the matrix $A = \begin{bmatrix} 28 & 36 \\ -18 & -23 \end{bmatrix}$,

determine the corresponding eigenvalues λ_1 and λ_2 .

Lecture 25 4/13

Example 3 (Online Homework # 8)

Determine if λ is an eigenvalue of the matrix A:

(a)
$$A = \begin{bmatrix} 7 & -10 \\ 0 & -3 \end{bmatrix}$$
 and $\lambda = -2$;

(b)
$$A = \begin{bmatrix} -4 & -12 \\ 0 & 8 \end{bmatrix}$$
 and $\lambda = 3$;

(c)
$$A = \begin{bmatrix} -92 & 42 \\ -196 & 90 \end{bmatrix}$$
 and $\lambda = -8$].

http://www.ms.uky.edu/~ma138

Lecture 25 5 / 13

Finding the Eigenvalues

- We are interested in finding $\mathbf{v} \neq \mathbf{0}$ and λ such that $A\mathbf{v} = \lambda \mathbf{v}$.
- We can rewrite this equation as $A\mathbf{v} \lambda \mathbf{v} = \mathbf{0}$.
- In order to factor \mathbf{v} , we must multiply $\lambda \mathbf{v}$ by the identity matrix I_2 .

(In the $n \times n$ case we multiply instead by I_n . The procedure and outcome are exactly the same!)

- Multiplication by I_2 yields $A\mathbf{v} \lambda I_2\mathbf{v} = \mathbf{0}$.
- We can now factor \mathbf{v} , resulting in $(A \lambda I_2)\mathbf{v} = \mathbf{0}$.
- In Section 9.2, we showed that in order to obtain a nontrivial solution $(\mathbf{v} \neq \mathbf{0})$, the matrix $A \lambda I_2$ must be singular; that is,

$$\det(A - \lambda I_2) = 0$$

Lecture 25 6 / 13

Let us make the previous calculations more explicit (in the 2×2 case):

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \lambda \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

The equation $\det(A-\lambda I_2)=0$ that determines the eigenvalues of A is a polynomial equation in λ of degree two. This polynomial is referred to as the characteristic polynomial of A.

For a 2
$$\times$$
 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ define

- trace(A) = a + d,
- det(A) = ad − bc.

The characteristic polynomial has a simple form:

Characteristic Polynomial of the 2×2 Matrix A

$$\det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0$$

$$(a - \lambda)(d - \lambda) - bc = 0$$

$$\updownarrow$$

Corollary

If λ_1 and λ_2 are the solutions of the characteristic polynomial, then they must satisfy

 $\lambda^2 - \operatorname{trace}(A)\lambda + \det(A)$

$$trace(A) = \lambda_1 + \lambda_2$$
 $det(A) = \lambda_1 \lambda_2$.

Example 4 (\approx Problems #49-56, Section 9.3, p. 534)

Consider the matrix
$$A = \begin{bmatrix} -4 & 2 \\ -3 & 1 \end{bmatrix}$$
.

- (a) Find its eigenvalues λ_1 and λ_2 .
- (b) Find the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 associated with the eigenvalues from part (a).
- (c) Graph the lines through the origin in the direction of the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , together with the eigenvectors \mathbf{v}_1 and \mathbf{v}_2 and the vectors $A\mathbf{v}_1$ and $A\mathbf{v}_2$.

 $http://www.ms.uky.edu/{\sim}ma138$

Lecture 25 8 / 13

Example 5 (Online Homework #10)

Find the eigenvalues and associated \underline{unit} eigenvectors of the (symmetric)

matrix
$$A = \begin{bmatrix} 5 & -10 \\ -10 & 20 \end{bmatrix}$$
.

Lecture 25 9 / 13

Example 6 (Online Homework #12)

Let
$$A = \begin{bmatrix} -4 & 3 \\ 5 & k \end{bmatrix}$$
.

Find the value of k so that A has 0 as an eigenvalue.

Lecture 25

10/13

Example 7 (Online Homework #13)

For which value of
$$k$$
 does the matrix $A = \begin{bmatrix} -3 & k \\ -8 & -8 \end{bmatrix}$ have one real eigenvalue of multiplicity 2?

Lecture 25 11 / 13

Example 8 (Online Homework #16)

Find a matrix A such that $\mathbf{v}_1 = \begin{bmatrix} -3 \\ -4 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$ are eigenvectors of A, with eigenvalues $\lambda_1 = 5$ and $\lambda_2 = -1$ respectively.

http://www.ms.uky.edu/~ma138

Lecture 25 12 / 13

Example 9 (Complex Eigenvalues)

Consider the matrix
$$A = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$
.

- (a) Find its eigenvalues.
- (b) Find the eigenvectors associated with the eigenvalues from part (a).

http://www.ms.uky.edu/~ma138

Lecture 25 13 / 13