MA 138 – Calculus 2 with Life Science Applications Tangent Planes, Differentiability, and Linearization (Section 10.4)

Alberto Corso

 $\langle alberto.corso@uky.edu \rangle$

Department of Mathematics University of Kentucky

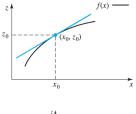
http://www.ms.uky.edu/~ma138

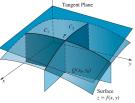
Lectures 34 & 35

- The key idea in both the one- and the two-dimensional case is to approximate functions by linear functions, so that the error in the approximation vanishes as we approach the point at which we approximated the function.
- If z = f(x) is differentiable at x = x₀, then the equation of the tangent line of z = f(x) at (x₀, z₀) with z₀ = f(x₀) is given by

$$z-z_0 = f(x_0)(x-x_0).$$

We now generalize this situation to functions of two variables. The analogue of a tangent line is called a **tangent plane**, an example of which is shown in the picture on the right.





http://www.ms.uky.edu/~ma138

Lectures 34 & 35

Tangent Plane

- Let z = f(x, y) be a function of two variables.
- We saw that the partial derivatives ∂f/∂x and ∂f/∂y, evaluated at (x₀, y₀), are the slopes of tangent lines at the point (x₀, y₀, z₀), with z₀ = f(x₀, y₀), to certain curves through (x₀, y₀, z₀) on the surface z = f(x, y).
- These two tangent lines, one in the x-direction, the other in the y-direction, define a unique plane.
- If, in addition, f(x, y) has partial derivatives that are continuous on an open disk containing (x₀, y₀), then we can show that the tangent line at (x₀, y₀, z₀) to any other smooth curve on the surface z = f(x, y) through (x₀, y₀, z₀) is contained in this plane.
- The plane is then called the tangent plane.

More precisely, one can show the following result:

Equation of the Tangent Plane

If the tangent plane to the surface z = f(x, y) at the point (x_0, y_0, z_0) , where $z_0 = f(x_0, y_0)$, **exists**, then that tangent plane has the equation

$$z-z_0=\frac{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\frac{\partial f(x_0,y_0)}{\partial y}(y-y_0)$$

- We should observe the similarity of this equation to the equation of the tangent line in the one-dimensional case.
- As we mentioned, the mere existence of the partial derivatives $\frac{\partial f(x_0, y_0)}{\partial x}$ and $\frac{\partial f(x_0, y_0)}{\partial y}$ is not enough to guarantee the existence of a tangent plane at (x_0, y_0, z_0) ; something stronger is needed.

Example 1

Find an equation of the tangent plane to surface given by the graph of the function

$$z = f(x, y) = xy^2 + x^2y$$

at the point (1, -1, 0).

Example 2 (Problem #4, Online Homework)

Find an equation of the tangent plane to surface given by the graph of the function

$$F(r,s) = r^4 s^{-0.5} - s^{-4}$$

at the point with $r_0 = 1$ and $s_0 = 1$.

Review of differentiability for a function of one variable

If z = f(x) is a function of one variable, the tangent line is used to approximate f(x) at $x = x_0$. The linearization of f(x) at $x = x_0$ is given by

 $L(x) = f(x_0) + f'(x_0)(x - x_0).$

The distance between f(x) and its linear approximation at $x = x_0$ is then

$$|f(x) - L(x)| = |f(x) - f(x_0) - f'(x_0)(x - x_0)|$$

If we divide the latter equation by the distance $|x - x_0|$, we find that

$$\left|\frac{f(x)-L(x)}{x-x_0}\right| = \left|\frac{f(x)-f(x_0)}{x-x_0}-f'(x_0)\right|.$$

Taking a limit and using the definition of the derivative at $x = x_0$, yields

$$\lim_{x\to x_0}\left|\frac{f(x)-L(x)}{x-x_0}\right|=0.$$

We say that f(x) is differentiable at $x = x_0$ if the above equation holds.

http://www.ms.uky.edu/~ma138

Lectures 34 & 35

Differentiability and Linearization

Suppose that f(x, y) is a function of two independent variables with both $\partial f/\partial x$ and $\partial f/\partial y$ defined on an open disk containing (x_0, y_0) .

Set
$$L(x,y) = f(x_0, y_0) + \frac{\partial f(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial f(x_0, y_0)}{\partial y}(y - y_0).$$
If $f(x,y)$ is differentiable at (x_0, y_0) if $\lim_{(x,y) \to (x_0, y_0)} \left| \frac{f(x,y) - L(x,y)}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} \right| = 0.$

- If f(x, y) is differentiable at (x_0, y_0) , then z = L(x, y) provides the equation of the tangent plane to the graph of f at (x_0, y_0, z_0) .
- f(x, y) is differentiable if it is differentiable at every point of its domain.
- Suppose f is differentiable at (x_0, y_0) , the approximation $f(x, y) \approx L(x, y)$ is the standard linear approximation, or the tangent plane approximation, of f(x, y) at (x_0, y_0) .

- That f(x, y) is differentiable at (x₀, y₀) means that the function f(x, y) is close to the tangent plane at (x₀, y₀) for all (x, y) close to (x₀, y₀).
- As in the one-dimensional case, the following theorem holds:

Theorem

If f(x, y) is differentiable at (x_0, y_0) , then f is continuous at (x_0, y_0) .

- The mere existence of the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ at (x_0, y_0) , however, is not enough to guarantee differentiability (and, consequently, the existence of a tangent plane at a certain point).
- The following differentiability criterion suffices for all practical purposes.

Sufficient Condition For Differentiability

Suppose f(x, y) is defined on an open disk centered at (x_0, y_0) and the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ are continuous on an open disk centered at (x_0, y_0) . Then f(x, y) is differentiable at (x_0, y_0) .

Example 3 (Problem #6, Online Homework)

Estimate f(3.01, 2.02) given that

$$f(3,2) = 4$$
 $f_x(3,2) = -5$ $f_y(3,2) = 2.$

Example 4 (Problem #5(b), Exam 4, Spring 2012)

Find the linear approximation of the function

$$f(x,y) = x \cdot e^{xy}$$

at (1, 0), and use it to approximate f(1.1, -0.1). Using a calculator, compare the approximation with the exact value of f(1.1, -0.1).

Example 5 (Problem #9, Online Homework)

Find the linearization of the function

$$f(x,y) = \sqrt{23 - x^2 - 5y^2}$$

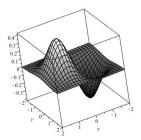
at the point (-3, -1).

Use the linear approximation to estimate the value of f(-3.1, -0.9).

Example 6 (Problem #6, Exam 3, Spring 2013)

Consider the function $f(x, y) = x e^{-x^2 - y^2}$ whose graph is given in the picture on the right.

(a) Find the z-coordinate z₀ of the point P on the graph of the function f(x, y) with x-coordinate x₀ = 1 and y-coordinate y₀ = 1.



- (b) Write the equation of the tangent plane to the graph of the function f(x, y) at the point P, as above, with coordinates $x_0 = 1$ and $y_0 = 1$.
- (c) Write the linear approximation, L(x, y), of the function f at the point with $x_0 = 1$ and $y_0 = 1$, as above, and use it to approximate f(1.1, 0.9).

Compare this approximate value to the exact value f(1.1, 09).

Functions of more than two variables

Similar discussions can be carried for functions of more than two variables.

For example, if w = f(x, y, z) is a function of three independent variables which is differentiable at a point (x_0, y_0, z_0) , then the linear approximation L(x, y, z) of f at (x_0, y_0, z_0) is given by the formula

L(x, y, z) =

 $f(x_0, y_0, z_0) + f_x(x_0, y_0, z_0) \cdot (x - x_0) + f_y(x_0, y_0, z_0) \cdot (y - y_0) + f_z(x_0, y_0, z_0) \cdot (z - z_0).$

Example 7 (Problem #10, Online Homework)

Find the linear approximation to the function

$$f(x, y, z) = \frac{xy}{z}$$

at the point (-2, -3, -1).