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Systems of Differential Equations
Suppose that we are given a set of variables x1, x2, . . . , xn, each
depending on an independent variable, say, t, so that

x1 = x1(t), x2 = x2(t), . . . , xn = xn(t).

Suppose also that the dynamics of the variables are linked by n
differential equations (≡DEs) of the first-order; that is,

dx1
dt = g1(t, x1, x2, . . . , xn)

...
dxn
dt = gn(t, x1, x2, . . . , xn)

This set of equations is called a system of differential equations.
On the LHS are the derivatives of xi(t) with respect to t. On the RHS
is a function gi that depends on the variables x1, x2, . . . , , xn and on t.
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Examples

Kermack & McKendrick epidemic disease model (SIR, 1927)

dS
dt = −b SI

dI
dt = b SI − a I

dR
dt = a I

S = S(t) = # of susceptible individuals
I = I(t) = # of infected individuals
R = R(t) = # of removed individuals (≡no longer susceptible)
a, b = constant rates

Lotka-Volterra predator-prey model (1910/1920):
dN
dt = r N − a PN

dP
dt = ab PN − d P

N = N(t) = prey density
P = P(t) = predator density
r = intrinsic rate of increase of the prey
a = attack rate
b = efficiency rate of predators in turning preys into new offsprings
d = rate of decline of the predators
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Direction Field of a System of 2 Autonomous DEs

Review the notion of the direction field of a DE of the first order
dy/dx = f(x, y). We encountered this notion just before Section 8.2
(Handout; Lectures 15 & 16).
Consider, now a system of two autonomous differential equations

dx
dt = g1(x, y)

dy
dt = g2(x, y)

Assuming that y is also a function of x and using the chain rule, we
can eliminate t and obtain the DE

dy
dx =

dy/dt
dx/dt =

g2(x, y)
g1(x, y)

of which we can plot the direction field.
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Example (Lotka-Volterra)

Consider the system of DEs dx
dt = x − 4xy and dy

dt = 2xy − 3y.

The direction field of the differential equation dy
dx =

(2x − 3)y
x(1 − 4y) has been

produced with the SAGE commands in Chapter 8.

Notice that the trajectories are closed curves. Furthermore, they all seem
to revolve around the point P(3/2, 1/4). This is the point where the
factors 2x − 3 and 1 − 4y of dy/dt and dx/dt, respectively, are both zero.
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Linear Systems of Differential Equations (11.1)
We first look at the case when the gi’s are linear functions in the
variables x1, x2, ..., xn — that is,

dx1
dt = a11(t)x1 + . . .+ a1n(t)xn + f1(t)

...
dxn
dt = an1(t)x1 + . . .+ ann(t)xn + fn(t)

We can write the linear system in matrix form as

d
dt


x1(t)

...
xn(t)

 =


a11(t) . . . a1n(t)

... ...
an1(t) . . . ann(t)




x1(t)
...

xn(t)

+


f1(t)

...
fn(t)


and we call it an inhomogeneous system of linear, first-order
differential equations.
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We can write our inhomogeneous system of linear, first-order
differential equations as follows

dx
dt = A(t)x + f(t)

We are mainly interested in the case when f(t) = 0, that is,
dx
dt = A(t)x,

an homogeneous system of linear, first-order differential equations.
Finally, we will study the case in which A(t) does not depend on t

dx
dt = Ax,

an homogeneous system of linear, first-order differential
equations with constant coefficients.
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Example 1 (Problem #8, Exam 3, Spring 2013)
(a) Verify that the functions x(t) = e4t + 5e−t and y(t) = 4e4t − 5e−t

(whose graphs are given below) are solutions of the system of DEs
dx
dt = y

dy
dt = 4x + 3y

with x(0) = 6 and y(0) = −1.
(b) Rewrite the given system of DEs and its solutions in the form

d
dt

[
x
y

]
=

[
a b
c d

][
x
y

]
︸ ︷︷ ︸

system of differential equations

[
x(t)
y(t)

]
=

[
α

β

]
e4t + 5

[
γ

δ

]
e−t

︸ ︷︷ ︸
solutions

for appropriate choices of the constants a, b, c, d, α, β, γ, and δ.
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Specific Solutions of a Linear System of DEs

Consider the system dx
dt = Ax.

We claim that the vector-valued function

x(t) =

 v1eλt

v2eλt

 =

 v1

v2

 eλt

where λ, v1 and v2 are constants, is a solution of the given system of
DEs, for an appropriate choice of values for λ, v1, and v2.

More precisely,

 v1

v2

 is an eigenvector of the matrix A

corresponding to the eigenvalue λ of A.
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The Superposition Principle

Principle
Suppose that 

dx1
dt
dx2
dt

 =

 a11 a12

a21 a22

 x1(t)

x2(t)

 .

If y(t) =

 y1(t)

y2(t)

 and z(t) =

 z1(t)

z2(t)


are solutions of the given system of DEs, THEN

x(t) = c1y(t) + c2z(t)

is also a solution of the given system of DEs for any constants c1 and c2.
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The General Solution

Theorem
Let

dx
dt = Ax

where A is a 2 × 2 matrix with two real and distinct eigenvalues λ1 and
λ2 with corresponding eigenvectors v1 and v2.

THEN
x(t) = c1v1eλ1t + c2v2eλ2t

is the general solution of the given system of DEs.

The constants c1 and c2 depend on the initial condition.
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