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Equilibria and Stability
In Section 8.2 we already encountered the concepts of equilibria and
stability, when we discussed ordinary DEs. Both concepts can be
extended to systems of DEs.
We now restrict ourselves to the case

dx
dt = Ax with A =

[
a11 a12

a21 a22

]
x =

[
x1(t)
x2(t)

]
.

We say that a point x̂ =

[
x̂1

x̂2

]
is an equilibrium point of our given

system of linear DEs whenever A x̂ = 0.
It follows from results in Section 9.2 that if detA ̸= 0, then (0, 0) is
the only equilibrium of our given system of linear DEs. If detA = 0,
then there will be other equilibria.
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If we start a system of DEs at an equilibrium, it remains there at all
later times.
This does not mean that if the system is in equilibrium and is
perturbed by a small amount, it will return to the equilibrium.
Whether or not a solution will return to an equilibrium after a small
perturbation is addressed by the stability of the equilibrium.
In the case when the matrix A has two real and distinct eigenvalues,
the solution of our given system of linear DEs is given by

x(t) = c1eλ1tv1 + c2eλ2tv2,

where v1 and v2 are the eigenvectors corresponding to the eigenvalues
λ1 and λ2 of A and the constants c1 and c2 depend on the initial
condition.
Knowing the solution will allow us to study the behavior of the
solutions as t → ∞ and thus address the question of stability, at least
when the eigenvalues are distinct.
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Classification of Equilibria

Case 1: A has two distinct real nonzero eigenvalues λ1 and λ2

1. Both eigenvalues are negative: The equilibrium (0, 0) is globally
stable, since the solution will approach the equilibrium (0, 0)
regardless of the starting point. We call (0, 0) a sink or a stable
node.

2. The eigenvalues have opposite signs: Unless we start in the
direction of the eigenvector associated with the negative eigenvalue,
the solution will not converge to the equilibrium (0, 0). We say that
the equilibrium (0, 0) is unstable and call (0, 0) a saddle point.

3. Both eigenvalues are positive: The solution will not converge to
(0, 0) unless we start at (0, 0). We say that the equilibrium (0, 0) is
unstable, and we call (0, 0) a source or an unstable node.
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Case 2: A has two complex conjugate eigenvalues λ1,2 = α± iβ
1. α < 0: Starting from any point other than (0, 0), solutions spiral into

the equilibrium (0, 0). For this reason, the equilibrium (0, 0) is called
a stable spiral. When we plot solutions as functions of time, they
show oscillations. The amplitude of the oscillations decreases over
time. We therefore call the oscillations damped.

2. α > 0: Starting from any point other than (0, 0), the solutions spiral
out from the equilibrium (0, 0). For this reason, we call the
equilibrium (0, 0) an unstable spiral. When we plot solutions as
functions of time, we see that the solutions show oscillations as
before, but this time their amplitudes are increasing.

3. α = 0: Solutions spiral around the equilibrium (0, 0), but neither
approach nor move away from the equilibrium (since the amplitude of
the solutions does not change). The equilibrium (0, 0) is called a
neutral spiral or a center. The solutions form closed curves.
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Example 8
(0, 0) globally stable equilibrium; sink or a stable node

d
dt

[
x
y

]
=

[
−3

√
2

√
2 −2

][
x
y

]

λ1 = −1 λ2 = −4
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Example 9 (0, 0) unstable equilibrium; saddle point

d
dt

[
x
y

]
=

[
2 −2
2 −3

][
x
y

]

λ1 = 1 λ2 = −2
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Example 10 (0, 0) unstable node; source

d
dt

[
x
y

]
=

[
3 2
1 2

][
x
y

]

λ1 = 1 λ2 = 4
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Example 11 (0, 0) stable spiral; negative real part
d
dt

[
x
y

]
=

[
−1 −1

1 0

][
x
y

]

λ1,2 = −1
2 ± i

√
3

2
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Example 12 (0, 0) unstable spiral; positive real part
d
dt

[
x
y

]
=

[
1 −1
1 0

][
x
y

]

λ1,2 =
1
2 ± i

√
3

2
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Example 13 (0, 0) neutral spiral or center; no real part
d
dt

[
x
y

]
=

[
3 2

−5 −3

][
x
y

]

λ1,2 = ±i
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Summary of Stability at (0, 0)
The relationships between the characteristic polynomial, eigenvalues,
trace, and determinant of a 2 × 2 matrix A are given by

det(A − λI2) = λ2 − trace(A)λ+ det(A) = 0
trace(A) = Re(λ1) + Re(λ2) det(A) = λ1λ2.

Also, the discriminant of the quadratic equation det(A − λI2) = 0 is
∆ = [trace(A)]2 − 4 det(A)

Thus the condition ∆ = 0 (≡repeated eigenvalue) describes the
parabola det(A) = 1/4[trace(A)]2 in the trace-det plane.
Theorem: The origin (0, 0) of a system of two linear, homogeneous

DEs with constant coefficients is a stable equilibrium ⇔ the real parts
of both eigenvalues are negative ⇔ det(A) > 0 and trace(A) < 0.
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The stability properties of the equilibrium at the origin can be summarized
graphically in terms of the determinant and the trace of the matrix A in
the trace-det plane:

det(A)

trace(A)

∆ = 0
∆ = 0

stable nodes

stable spirals

ce
nt

er
s

unstable spirals

unstable nodes

saddle points
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