MA 138 Worksheet #1 Syllabus & Section 6.3 1/9/24

1 Syllabus discussion.

Area between curves

Assume f and g are continuous and $f(x) \ge g(x)$ for all x in [a, b]. The area A of the region bounded by the curves y = f(x), y = g(x), and the lines x = a, x = b, is

$$A = \int_{a}^{b} [f(x) - g(x)] \, dx.$$

- **2** Find the area enclosed between $f(x) = 0.9x^2 + 7$ and g(x) = x from x = -4 to x = 8.
- **3** Sketch the region enclosed by $x + y^2 = 20$ and x + y = 0. Decide whether to integrate with respect to x or y, and then find the area of the region.

Average of a continuous function over an interval

The average value of a continuous function f defined on the interval [a, b] is given by

$$f_{\mathsf{avg}} = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Moreover, by the Fundamental Theorem of Calculus there exists a number $c \in (a, b)$ such that

$$f(c)(b-a) = \int_{a}^{b} f(x) \, dx$$

That is, when f is continuous, there exists a number c such that $f(c) = f_{avg}$. If f is a continuous, positive valued function, f_{avg} is that number such that the rectangle with base [a, b] and height f_{avg} has the same area as the region underneath the graph of f from a to b.

- **4** Find the average value of the function $f(x) = \frac{-8}{x}$ on the interval [1,4].
- **5** In a certain city the temperature (in degrees Fahrenheit) t hours after 9 am was approximated by the function $T(t) = 50 + 6 \sin\left(\frac{\pi t}{12}\right)$.
 - (a) Determine the temperature at 9 am.
 - (b) Determine the temperature at 3 pm.
 - (c) Find the average temperature during the period from 9 am to 9 pm.

Cumulative change

Given the initial value problem
$$\frac{dN}{dt} = f(t) \qquad N(a) = N_a \quad \text{has solution}$$
$$N(t) - N(a) = \int_a^t f(u) \, du = \int_a^t \frac{dN}{du} \, du$$
In other words,
$$\left\{ \begin{array}{c} \text{cumulative change} \\ \text{on the interval } [a,t] \end{array} \right\} = \int_a^t \left\{ \begin{array}{c} \text{instantaneous rate of} \\ \text{change at time } u \end{array} \right\} \, du$$

- **6** Recall that the acceleration a(t) of a particle moving along a straight line is the instantaneous rate of change of the velocity v(t); that is, $a(t) = \frac{d}{dt}v(t)$. Assume that $a(t) = 32 \text{ ft/s}^2$.
 - (a) Express the cumulative change in velocity during the interval [0,t] as a definite integral, and compute the integral.
 - (b) Given that the initial velocity of the object is 5 ft/s, find a formula for v(t).
 - (c) Now, given your response to part (b), find the cumulative change in position during the first 10 seconds of free-fall.