MA 138 Worksheet #13

Section 8.2 2/20/24

Equilibria of an autonomous differential equation

If \hat{y} (read "y hat") satisfies $g(\hat{y}) = 0$ then \hat{y} is an equilibrium of the autonomous differential equation $\frac{dy}{dx} = g(y)$.

The **basic property** of equilibria is that if, initially (say, at x = 0), $y(0) = \hat{y}$ and \hat{y} is an equilibrium, then $y(x) = \hat{y}$ for all $x \ge 0$.

Analytic Approach to Stability: "Stability Criterion"

Consider the differential equation $\frac{dy}{dx} = g(y)$ where g(y) is a differentiable function. Assume that \hat{y} is an equilibrium; that is, $g(\hat{y}) = 0$.

Then

- \hat{y} is locally stable if $g'(\hat{y}) < 0$;
- \hat{y} is unstable if $g'(\hat{y}) > 0$.

Note: $g'(\hat{y})$ is called an **eigenvalue**; it is the slope of the tg. line of g(y) at \hat{y} .

- 1 Suppose that $\frac{dy}{dx} = y(y-1)(y-2).$
 - (a) Find the equilibria of this differential equation.
 - (b) Compute the eigenvalues associated with each equilibrium and discuss the stability of the equilibria.
- 2 Two different strains of bacteria sometimes feed on chemicals excreted by one another: strain 1 feeds on chemicals produced by strain 2, and vice versa. This phenomenon is referred to as *cross-feeding*. For a relatively simple model of cross-feeding, it can be shown that the frequency P(t) of the strain 1 bacteria is governed by the differential equation

$$\frac{dP}{dt} = P(1-P)(\alpha(1-P) - \beta P)),$$

where α and β are positive constants.

- (a) Assume $\alpha = 2$ and $\beta = 3$. Write down your new differential equation.
- (b) Find the stable equilibrium point(s).
- (c) Create a slope field for the differential equation.

Graphical Approach to Stability

Consider the autonomous differential equation $\frac{dy}{dx} = g(y).$

To find the equilibria of our DE, we set g(y) = 0. **Graphically**, this means that if we graph g(y) (i.e., the derivative of y with respect to x) as a function of y, then the equilibria are the points of intersection of g(y) with the horizontal axis, which is the y-axis in this case, since y is the independent variable.

We can then use the graph of g(y) to say the following about the fate of a solution on the basis of its current value:

- if the current value y is such that g(y) > 0 (i.e., dy/dx > 0), then y will increase as a function of x;
- if the current value y is such that g(y) < 0 (i.e., dy/dx < 0), then y will decrease as a function of x;
- the points y where g(y) = 0 are the points where y will not change as a function of x [since g(y) = dy/dx = 0]. These are the equilibria.

The arrows close to the equilibria indicate the type of stability. For our choice of g(y), the equilibria are at $\hat{y} = 0$, \hat{y}_1 , and \hat{y}_2 .

3 Suppose that $\frac{dy}{dx} = (4-y)(5-y).$

Graph $\frac{dy}{dx}$ as a function of y, and use your graph to discuss the stability of the equilibria.

4 Suppose that $\frac{dy}{dx} = y(y-1)(y-2).$

Graph $\frac{dy}{dx}$ as a function of y, and use your graph to discuss the stability of the equilibria.