MA 138 Worksheet #8

Section 7.4

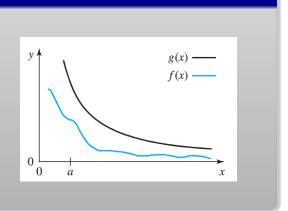
2/1/24

 ${\bf 1}$ Determine whether the integral

 $\int_0^1 \frac{-3}{x^7} dx$ is divergent or convergent.

2 Determine whether the integral $\int_{-2}^{2} \frac{2x}{(x^2-1)^{1/3}} dx$ is divergent or convergent. If it is convergent, evaluate it. If not, state your answer as "divergent."

Convergence Test


We assume that $f(x) \ge 0$ for $x \ge a$.

To show that
$$\int_a^\infty f(x)\,dx$$
 is convergent

it is enough to find a function g(x) such that

•
$$f(x) \le g(x)$$
 for all $x \ge a;$

•
$$\int_{a}^{\infty} g(x) dx$$
 is convergent.

3 (a) Show that
$$0 \le e^{-x^2} \le e^{-x}$$
 for $x \ge 1$.

 $(b)\;\; \mbox{Use your result in }(a)$ to show that the integral

$$\int_{1}^{\infty} e^{-x^2} dx \quad \text{ is convergent.}$$

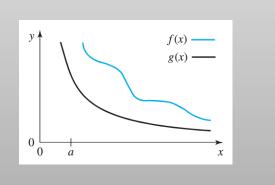
.)

4 (a) Show that
$$0 \le \frac{1}{\sqrt{1+x^4}} \le \frac{1}{x^2}$$
 for $x > 0$.

 $(b) \ \mbox{Use your result in } (a)$ to show that the integral

 $\int_1^\infty \frac{1}{\sqrt{1+x^4}} \, dx \quad \text{ is convergent.}$

Divergence Test


 J_a

We assume that $f(x) \ge 0$ for $x \ge a$.

To show that $\int_a^\infty f(x) \, dx$ is divergent

it is enough to find a function g(x) such that

•
$$g(x) \le f(x)$$
 for all $x \ge a$;
• $\int_{-\infty}^{\infty} g(x) dx$ is divergent.

